留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反应熔渗C/C-SiC-ZrC复合材料的界面特征及其力学性能

丁家鑫 陈招科 王铎 熊翔

丁家鑫, 陈招科, 王铎, 等. 反应熔渗C/C-SiC-ZrC复合材料的界面特征及其力学性能[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 丁家鑫, 陈招科, 王铎, 等. 反应熔渗C/C-SiC-ZrC复合材料的界面特征及其力学性能[J]. 复合材料学报, 2024, 42(0): 1-12.
DING Jiaxin, CHEN Zhaoke, WANG Duo, et al. Interface characteristics and mechanical properties of reactive melt infiltrated C/C-SiC-ZrC matrix composites[J]. Acta Materiae Compositae Sinica.
Citation: DING Jiaxin, CHEN Zhaoke, WANG Duo, et al. Interface characteristics and mechanical properties of reactive melt infiltrated C/C-SiC-ZrC matrix composites[J]. Acta Materiae Compositae Sinica.

反应熔渗C/C-SiC-ZrC复合材料的界面特征及其力学性能

基金项目: 总装重点实验室基金(No.6142907200301);国家自然科学基金面上项目(No.52072410)
详细信息
    通讯作者:

    陈招科,研究员,博士,研究方向为耐烧蚀高熵陶瓷、多元超高温陶瓷及其改性复合材料 E-mail: chenzhaoke2008@csu.edu.cn

  • 中图分类号: TB332

Interface characteristics and mechanical properties of reactive melt infiltrated C/C-SiC-ZrC matrix composites

Funds: Fund of Key Laboratory of Final Assembly (No.6142907200301); General Program of National Natural Science Foundation of China (No.52072410).
  • 摘要: C/C-ZrC-SiC复合材料作为一种极具前景的热防护材料,在航空航天领域均有广泛应用。但是反应熔渗法(Reactive melt infiltration,RMI)制备的C/C-ZrC-SiC复合材料却存在力学性能偏低的缺点,成为制约其发展应用的主要因素。为了改善 C/C- SiC-ZrC 基复合材料的纤维损伤和力学性能,通过化学气相沉积(Chemical vapor deposition, CVD)在碳纤维针刺坯体中引入了300 nm厚的热解碳(Pyrolysis carbon,PyC)界面、300 nm厚的PyC/SiC双层界面和100 nm、300 nm、800 nm厚的(PyC+SiC)共沉积界面,再采用RMI制备出C/C-SiC-ZrC复合材料。采用XRD、SEM、EPMA和TEM等分析手段研究了C/C-SiC-ZrC复合材料的物相、微观形貌、元素分布以及RMI后C/C-SiC-ZrC复合材料的界面损伤情况,并利用三点弯曲试验评估了RMI后试样的弯曲性能。结果表明:界面的引入不仅起到了对纤维的保护作用,同时也改善了纤维和基体间的结合状态,极大的避免了反应熔渗对碳纤维的侵蚀;PyC界面对纤维的保护作用有限,而PyC/SiC双层界面的保护作用最好;界面类型和界面厚度对复合材料力学性能产生重要影响,当界面厚度相同时,含(PyC+SiC)共沉积界面复合材料和含PyC/SiC双层界面复合材料的抗弯强度分别为162.80 MPa和208.58 MPa,均优于含PyC界面的复合材料;随(PyC+SiC)共沉积界面厚度的增大,复合材料的力学性能呈现先上升后下降的趋势。

     

  • 图  1  含不同界面低密度C/C坯体微观形貌及X射线衍射

    (a)(d)PyC界面;(b)(e) 300 nm共沉积界面;(c)(f)PyC/SiC双层界面;(g)100 nm共沉积界面;(i)800 nm共沉积界面; (h) C/C坯体X射线衍射

    Figure  1.  Microstructures and X-ray diffraction of low-density C/C preforms with different interfaces (a)(d) PyC interface; (b)(e) 300 nm codeposition interface; (c)(f) PyC/SiC double-layer interface; (g)100 nm codeposition interface; (i)800 nm codeposition interface; (h) C/C body X-ray diffraction

    图  2  含不同界面C/C-SiC-ZrC复合材料X射线衍射结果

    Figure  2.  X-ray diffraction results of C/C-SiC-ZrC composites with different interfaces

    图  3  含不同界面C/C-SiC-ZrC复合材料低倍数SEM图像

    (a) 热解碳(PyC)界面; (b) 100 nm(PyC+SiC)共沉积界面; (c) 300 nm(PyC+SiC)共沉积界面; (d) 800 nm(PyC+SiC)共沉积界面;(e) PyC/SiC双层界面

    Figure  3.  Low magnification SEM images of C/C-SiC-ZrC composites with different interfaces

    (a) Pyrolysis carbon (PyC) interface; (b) 100 nm(PyC+SiC) co-deposition interface; (c) 300 nm(PyC+SiC) co-deposition interface; (d) 800 nm(PyC+SiC) codeposition interface; (e) PyC/SiC double-layer interface

    图  4  含PyC/SiC双层界面的C/C-SiC-ZrC复合材料内部微观结构及EDS分析

    (a) 低倍数SEM图像; (b) 高倍数SEM图像; (c) (d) (e) EDS元素分析

    Figure  4.  EDS analysis of internal microstructure and elemental composition of C/C-SiC-ZrC composites with PyC/SiC double-layer interface

    (a) low-magnification SEM images; (b) high-magnification SEM images; (c) (d) (e) EDS elemental analysis

    图  5  含不同界面复合材料高倍数SEM图像

    (a) (b) (c) PyC界面; (d) (e) (f) (PyC+SiC)共沉积界面; (g) (h) (i) PyC/SiC双层界面

    Figure  5.  High-magnification SEM images of composites with different interfaces

    (a) (b) (c) PyC interface; (d) (e) (f) (PyC+SiC) codeposition interface; (g) (h) (i) PyC/SiC double-layer interface

    图  6  熔渗后不同界面处元素分布线扫图

    (a) (d) PyC界面; (b) (e) (PyC+SiC)共沉积界面; (c) (f) PyC/SiC双层界面

    Figure  6.  Line scan of element distribution at different interfaces after infiltration

    (a) (d) PyC interface; (b) (e) (PyC+SiC) codeposition interface; (c) (f) PyC/SiC double-layer interface

    图  7  不同界面纤维与陶瓷相分界面及残余界面TEM图像

    (a)(d) PyC界面; (b) (e) (PyC+SiC)共沉积界面; (c) (f) PyC/SiC双层界面

    Figure  7.  TEM images of the interface and residual interface between fibers and ceramic phases at different interfaces

    (a)(d) PyC interface; (b) (e) (PyC+SiC) codeposition interface; (c) (f) PyC/SiC double-layer interface

    图  8  不同界面处陶瓷相分布情况

    (a) PyC界面; (b) (PyC+SiC)共沉积界面;(c) PyC/SiC双层界面

    Figure  8.  Distribution of ceramic phases at different interfaces

    (a) PyC interface; (b) (PyC+SiC) codeposition interface; (c) PyC/SiC double-layer interface

    图  9  含不同界面复合材料弯曲载荷-弯曲位移曲线

    Figure  9.  Bending load-bending displacement curves of composites with different interfaces

    图  10  含不同界面复合材料抗弯强度测试断口形貌

    (a) (d) PyC界面; (b) (e) (PyC+SiC)共沉积界面; (c) (f) PyC/SiC双层界面

    Figure  10.  Fracture morphology of flexural strength test of composites with different interface composites

    (a) (d) PyC interface; (b) (e) (PyC+SiC) codeposition interface; (c) (f) PyC/SiC double-layer interface

    图  11  含不同厚度(PyC+SiC)共沉积界面复合材料的抗弯曲线

    Figure  11.  Bending resistance lines of (PyC+SiC) co-deposited interfaces composites with different thicknesses

    图  12  含100 nm、800 nm (PyC+SiC)共沉积界面复合材料的抗弯断口形貌(a) (b) 100 nm; (c) (d) 800 nm

    Figure  12.  Bending fracture of composites with 100 nm and 800 nm (PyC+SiC) co-deposited interfaces (a) (b) 100 nm; (c) (d) 800 nm

    表  1  含不同类型、不同厚度界面的低密度碳纤维坯体的性能特征

    Table  1.   Parameters of low-density carbon fiber preforms with different type and thickness of interfaces

    Sample Type of interface Thickness of interface/nm Density/(g·cm−3) Porosity/%
    P PyC 300 1.29 28.6
    PS100 (PyC+SiC) co-deposition 100 1.31 29.3
    PS300 300 1.40 24.1
    PS800 800 1.39 26.3
    PC PyC/SiC 300/300 1.31 28.4
    下载: 导出CSV

    表  2  含不同厚度(PyC+SiC)共沉积界面复合材料抗弯性能

    Table  2.   Mechanical properties of co-deposited interface composites with different thicknesses

    SampleType of interfaceThiceness of interface/nmFlexural strength/MPa
    PS100(PyC+SiC) co-deposition100139.68
    PS300300162.80
    PS800800128.95
    下载: 导出CSV
  • [1] 梁伟, 金华, 孟松鹤, 等. 高超声速飞行器新型热防护机制研究进展[J]. 宇航学报, 2021, 42(4): 409-424. doi: 10.3873/j.issn.1000-1328.2021.04.002

    LIANG Wei, JIN Hua, MENG Songhe, et al. Research progress on new thermal protection mechanism of hypersonic vehicles[J]. Journal of Astronautics, 2021, 42(4): 409-424(in Chinese). doi: 10.3873/j.issn.1000-1328.2021.04.002
    [2] JACKSON L R, DIXON S C, TENNEY D R, et al. Hypersonic structures and materials - a progress report[J]. Aerospace America, 1987, (25): 722-736.
    [3] YANG X F, GUI Y W, TANG W, et al. Surface chemical effects on hypersonic nonequilibrium aeroheating in dissociated carbon-oxygen mixture[J]. Journal of Spacecraft and Rockets, 2018, 55(3): 687-697. doi: 10.2514/1.A34079
    [4] CAMPBELL I E, SHERWOOD E M. High-temperature materials and technology[J]. Journal of the Electrochemical Society, 1967, 115(4): 108-115.
    [5] UPADHYA K Y, YANG J M, HOFFMAN W P. Materials for ultra-high temperatures structural applications[J]. American Ceramic Society Bulletin, 1997, 76(12): 51-56.
    [6] SALUTE J, BULL J, RASKY D, et al. SHARP-B2: flight test objectives, project implementation and initial results [C]//2nd Annual Conference on Composites, Materials and Structures, 2001: 118-137.
    [7] WILLIAM, B, JOHNSON, et al. Kinetics of formation of a platelet-reinforced ceramic composite prepared by the directed reaction of zirconium with boron carbide[J]. Journal of the American Ceramic Society, 1991, 74(9): 2093-2101. doi: 10.1111/j.1151-2916.1991.tb08265.x
    [8] HE Q C, LI H J, LU J H, et al. Oxidation behavior of co-deposited ZrC modified C/C composites prepared by chemical liquid-vapor infiltration process[J]. Vacuum, 2017, 142: 154-163. doi: 10.1016/j.vacuum.2017.05.019
    [9] YAO J J, PANG S Y, HU C L, et al. Mechanical, oxidation and ablation properties of C/(C-SiC)(CVI)-(ZrC-SiC)(PIP) composites[J]. Corrosion Science, 2020, 162: 27-39.
    [10] TANG S, HU C. Design, Preparation and Properties of Carbon Fiber Reinforced Ultra-High Temperature Ceramic Composites for Aerospace Applications: A Review[J]. Journal of Materials Science & Technology, 2017, 33(2): 117-130.
    [11] FENG L, FAHRENHOLTZ W G, HILMAS G E, et al. Synthesis of single-phase high-entropy carbide powders[J]. Scripta Materialia, 2019, 162: 90-93. doi: 10.1016/j.scriptamat.2018.10.049
    [12] NI D, CHENG Y, ZHANG J, et al. Advances in ultra-high temperature ceramics, composites, and coatings[J]. Journal of Advanced Ceramics, 2022, 11(1): 1-56. doi: 10.1007/s40145-021-0550-6
    [13] 朱强强, 范金娟, 邬冠华. Cf/SiC复合材料的氧化及抗氧化技术研究进展[J]. 失效分析与预防, 2018, 13(1): 54-59.

    ZHU Qiangqiang, FAN Jinjuan, WU Guanhua. Research progress of oxidation and oxidation resistance of Cf /SiC composites[J]. Failure Analysis and Prevention, 2018, 13(1): 54-59(in Chinese).
    [14] WANG Y G, ZHU X J, ZHANG L T, et al. Reaction kinetics and ablation properties of C/C-ZrC composites fabricated by reactive melt infiltration[J]. Ceramics International, 2011, 37(4): 1277-1283. doi: 10.1016/j.ceramint.2010.12.002
    [15] ZOU L H, WALI N, YANG J M, et al. Microstructural development of a C-f/ZrC composite manufactured by reactive melt infiltration[J]. Journal of the European Ceramic Society, 2010, 30(6): 1527-1535. doi: 10.1016/j.jeurceramsoc.2009.10.016
    [16] YANG X, SU Z A, HUANG Q Z, Microstructure and mechanical properties of C/C-ZrC-SiC composites fabricated by reactive melt infiltration with Zr, Si mixed powders[J]. Journal of Materials Science & Technology, 2013, 29(08): 702-710.
    [17] 侯旭初, 郝振华, 舒永春, 等. 反应熔渗法制备耐烧蚀陶瓷改性C/C复合材料的研究进展[J]. 中南大学学报(自然科学版), 2020, 51(11): 3032-3043.

    HOU Xuchu, HAO Zhenhua, SHU Yongchun, et al. Research progress on preparation of ablative ceramic modified C/C composites by reactive infiltration[J]. Journal of Central South University (Science and Technology), 2020, 51(11): 3032-3043(in Chinese).
    [18] 易近人, 杨鑫, 黄启忠, 等. PyC/SiC界面改性C/C-SiC-ZrC复合材料的等离子烧蚀性能研究[J]. 炭素技术, 2021, 40(2): 22-26.

    Yi Jinren, Yang Xin, Huang Qizhong, et al. Ablation property of PyC/SiC interface modified C/C-SiC-ZrC composites under plasma flame[J]. Carbon Techniques, 2021, 40(2): 22-26(in Chinese).
    [19] WANG D K, DONG S M, ZHOU H J, et al. Effect of pyrolytic carbon interface on the properties of 3D C/ZrC-SiC composites fabricated by reactive melt infiltration[J]. Ceramics International, 2016, 42(8): 10272-10278. doi: 10.1016/j.ceramint.2016.03.155
    [20] CHENG Y, LIU C, HU P, et al. Using PyC coated short chopped carbon fiber to tackle the dilemma between tit toughness and strength of ZrC-SiC[J]. Ceramics International, 2019, 45(1): 503-509. doi: 10.1016/j.ceramint.2018.09.196
    [21] HU P, CHENG Y, GUO X, et al. Architectural engineering inspired method of preparing C-f/ZrC-SiC with graceful mechanical responses[J]. Journal of the American Ceramic Society, 2019, 102(1): 70-78. doi: 10.1111/jace.16018
    [22] DU B H, CHENG Y, XUN L C, et al. Using PyC modified 3D carbon fiber to reinforce UHTC under low temperature sintering without pressure[J]. Journal of Advanced Ceramics, 2021, 10(4): 871-884. doi: 10.1007/s40145-021-0495-9
    [23] 杨晓辉, 李克智, 白龙腾, 等. PyC界面层厚度对三维针刺C/ZrC-SiC复合材料力学性能影响规律[J]. 宇航材料工艺, 2021, 51(2): 38-46.

    YANG Xiaohui, LI Kezhi, BAI Longteng, et al. Effects of PyC interface thickness on the mechanical properties of 3D needled C/ZrC-SiC composites[J]. Aerospace Materials & Technology, 2021, 51(2): 38-46(in Chinese).
    [24] 中国国家标准化管理委员会(标准制定单位). 陶瓷材料抗弯曲强度试验方法: GB/T 4741-1999[S]. 北京: 中国标准出版社, 1999.

    Standardization Administration of the People’s Republic of China. Standard test method for bending strength of ceramic materials: GB/T 4741-1999[S]. Beijing: China Standards Press, 1999(in Chinese).
    [25] WANG D K, DONG S M, ZHOU H J, et al. Fabrication and microstructure of 3D C-f /ZrC-SiC composites: through RMI method with ZrO2 powders as pore-making agent[J]. Ceramics International, 2016, 42(6): 6720-6727. doi: 10.1016/j.ceramint.2016.01.041
  • 加载中
计量
  • 文章访问数:  69
  • HTML全文浏览量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-14
  • 修回日期:  2024-01-23
  • 录用日期:  2024-02-21
  • 网络出版日期:  2024-03-21

目录

    /

    返回文章
    返回