留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维增强聚丙烯复合材料管件“成形-弯曲”耦合数值模型

王振 任浩乾 曹悉奥 梅轩 朱国华 陈轶嵩 郭应时

王振, 任浩乾, 曹悉奥, 等. 碳纤维增强聚丙烯复合材料管件“成形-弯曲”耦合数值模型[J]. 复合材料学报, 2024, 41(6): 2952-2963. doi: 10.13801/j.cnki.fhclxb.20231016.002
引用本文: 王振, 任浩乾, 曹悉奥, 等. 碳纤维增强聚丙烯复合材料管件“成形-弯曲”耦合数值模型[J]. 复合材料学报, 2024, 41(6): 2952-2963. doi: 10.13801/j.cnki.fhclxb.20231016.002
WANG Zhen, REN Haoqian, CAO Xi’ao, et al. “Forming-bending” coupling numerical model for the carbon fiber reinforced polypropylene composite tube[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 2952-2963. doi: 10.13801/j.cnki.fhclxb.20231016.002
Citation: WANG Zhen, REN Haoqian, CAO Xi’ao, et al. “Forming-bending” coupling numerical model for the carbon fiber reinforced polypropylene composite tube[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 2952-2963. doi: 10.13801/j.cnki.fhclxb.20231016.002

碳纤维增强聚丙烯复合材料管件“成形-弯曲”耦合数值模型

doi: 10.13801/j.cnki.fhclxb.20231016.002
基金项目: 国家重点研发计划 (2021 YFB2501705);陕西省自然科学基金 (2023-JC-QN-0430);陕西省博士后科研项目(2023 BSHYDZZ124)
详细信息
    通讯作者:

    朱国华,博士,副教授,博士生导师,研究方向为汽车轻量化 E-mail: guohuazhu@chd.edu.cn

  • 中图分类号: TB333

“Forming-bending” coupling numerical model for the carbon fiber reinforced polypropylene composite tube

Funds: National Key R&D Program of China (2021 YFB2501705); Natural Science Foundation of Shaanxi Province (2023-JC-QN-0430); Shaanxi Province Postdoctoral Research Project Funding (2023 BSHYDZZ124)
  • 摘要: 当前复合材料车身零部件在研发过程中依然面临着制造工艺与结构性能孤立分析的难题,开发平纹织物纤维增强热塑性复合材料(Woven fabric reinforced thermoplastics, WFRTPs)的“成形-性能”耦合数值模型,对于促进WFRTPs在新能源汽车领域的产业化应用意义重大。本研究通过热模压工艺制备了两种不同纤维夹角的碳纤维增强聚丙烯(Carbon fiber reinforced polypropylene, CF/PP)薄壁管件,并对CF/PP预浸料和CF/PP层合板进行了准静态偏轴拉伸实验,对CF/PP管件进行了准静态弯曲测试,实验结果表明,由成形工艺引发的织物纤维夹角增加将导致CF/PP层合板剪切强度降低和失效应变增加,进一步造成CF/PP管件在弯曲工况下峰值载荷减小和失效位移增加。开发了CF/PP预浸料的次弹性成形本构模型、层合板的渐进损伤弯曲本构模型以及管件的“成形-弯曲”耦合本构模型并验证了上述本构模型的准确性,仿真结果表明,在压边力约束下制备的非正交CF/PP管件的剪切塑性应变比无压边力制备的正交试样高69%,纤维夹角的增加将显著增加CF/PP材料的塑性剪切应变,进而导致非正交CF/PP管件的弯曲失效位移显著增加。

     

  • 图  1  碳纤维增强聚丙烯(CF/PP)预浸料和层合板的偏轴拉伸实验

    Figure  1.  Bias-extension tests for carbon fiber reinforced polypropylene (CF/PP) prepregs and laminates

    图  2  热模压设备、模具以及CF/PP管件

    Figure  2.  Hot molding equipment, molds and CF/PP tubes

    图  3  CF/PP管件的热压工艺曲线

    Figure  3.  Hot molding process curve of CF/PP tubes

    图  4  三点弯曲(TPB)实验设备及夹具

    Figure  4.  Three-point bending (TPB) test equipment and fixtures

    图  5  CF/PP预浸料的偏轴拉伸实验结果

    Figure  5.  Bias-extension results of CF/PP prepregs

    图  6  CF/PP层合板的偏轴拉伸实验结果

    Figure  6.  Bias-extension results of CF/PP laminates

    图  7  正交CF/PP试件的纤维夹角和成形轮廓对比

    Figure  7.  Comprasions in fiber yarn angles and forming profiles of the orthogonal CF/PP specimen

    图  8  非正交CF/PP试件的纤维夹角和成形轮廓对比

    Figure  8.  Comprasions in fiber yarn angles and forming profiles of the non-orthogonal CF/PP specimen

    图  9  正交试件和非正交CF/PP试件的TPB模式对比

    Figure  9.  Comprasions in TPB deformation modes between orthogonal and non-orthogonal CF/PP specimens

    图  10  正交CF/PP试件的TPB载荷-位移和能量-位移曲线

    Figure  10.  TPB force-displacement and energy-displacement curves of the orthogonal CF/PP specimen

    图  11  非正交CF/PP试件的TPB载荷-位移和能量-位移曲线

    Figure  11.  TPB force-displacement and energy-displacement curves of the non-orthogonal CF/PP specimen

    图  12  成形过程中CF/PP的剪切变形示意图

    Figure  12.  Schematic diagram in shear deformation of CF/PP in forming process

    图  13  耦合分析计算流程图

    Figure  13.  Calculation fowchart of the coupling analysis

    图  14  非正交CF/PP试件剪切变形的实验与仿真结果对比

    Figure  14.  Comparisons in shear deformations of the non-orthogonal CF/PP specimen between experimental and numerical results

    图  15  非正交CF/PP试件成形轮廓的实验与仿真结果对比

    Figure  15.  Comparisons in forming profiles of the non-orthogonal CF/PP specimen between experimental and numerical results

    图  16  正交CF/PP试件TPB实验结果和数值结果的对比

    Figure  16.  Comparisons in TPB results between experiment and simulation of the orthogonal CF/PP specimen

    图  17  正交CF/PP试件TPB载荷-位移曲线实验结果和数值结果的对比

    Figure  17.  Comparisons in TPB force-displacement curves between experiment and simulation of the orthogonal CF/PP specimen

    图  18  非正交CF/PP试件耦合分析流程图

    Figure  18.  Coupling analysis folowchart of the non-orthogonal CF/PP specimen

    图  19  非正交CF/PP试件的纤维夹角变化和TPB变形特性的实验结果和数值结果的对比

    Figure  19.  Comparisons in fiber angle variations and TPB deformation characteristics between experimental and numerical results of the non-orthogonal CF/PP specimen

    图  20  非正交CF/PP试件TPB的载荷-位移曲线的实验结果和数值结果的对比

    Figure  20.  Comparisons in TPB force-displacement curves between experimental and numerical results of the non-orthogonal CF/PP specimen

    表  1  CF/PP层合板的力学性能

    Table  1.   Mechanical properties of CF/PP laminates

    Sample Strength/MPa Modulus/MPa Failure strain/% Yield strength/MPa
    (+45°/-45°)6 41 550 79.1 11.0
    (+52°/-52°)6 22 475 98.5 9.5
    (+57°/-57°)6 9 435 105.6 6.5
    下载: 导出CSV

    表  2  正交试件和非正交CF/PP试件的弯曲指标对比

    Table  2.   Comparisons in bending indicators between orthogonal and non-orthogonal CF/PP specimens

    SpecimenEA/JESA/(g·J-1)FPC/kN
    Orthogonal311.973.229.77
    Non-orthogonal307.923.147.82
    Notes: EA—Energy absorption; ESA—Specific energy absorption; FPC—Peak force.
    下载: 导出CSV
  • [1] 刘腾飞, 田小永, 朱伟军, 等. 连续碳纤维增强聚乳酸复合材料3D打印及回收再利用机理与性能[J]. 机械工程学报, 2019, 55(7): 128-134. doi: 10.3901/JME.2019.07.128

    LIU Tengfei, TIAN Xiaoyong, ZHU Weijun, et al. Mechanism and performance of 3D printing and recycling for continuous carbon fiber reinforced PLA composites[J]. Journal of Mechanical Engineering, 2019, 55(7): 128-134(in Chinese). doi: 10.3901/JME.2019.07.128
    [2] 肇研, 孙铭辰, 张思益, 等. 连续碳纤维增强高性能热塑性复合材料的研究进展[J]. 复合材料学报, 2022, 39(9): 4274-4285.

    ZHAO Yan, SUN Mingchen, ZHANG Siyi, et al. Advance in continuous carbon fiber reinforced high performance thermoplastic composites[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4274-4285 (in Chinese).
    [3] LIANG B, BOISSE P. A review of numerical analyses and experimental characterization methods for forming of textile reinforcements[J]. Chinese Journal of Aeronautics, 2021, 34(8):143-163.
    [4] GONG Y K, SONG Z R, NING H M, et al. A comprehensive review of characterization and simulation methods for thermo-stamping of 2D woven fabric reinforced thermoplastics[J]. Composites Part B: Engineering, 2020, 203: 108462.
    [5] 王振, 朱国华. Al-碳纤维增强聚丙烯混合帽型梁的热模压成形特性及三点弯曲特性[J]. 复合材料学报, 2022, 39(12): 6096-6108.

    WANG Zhen, ZHU Guohua. Hot press molding characteristics and three-point bending characteristics of Al-carbon fiber reinforced polypropylene hybrid hat-shaped rail[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 6096-6108 (in Chinese).
    [6] 王振, 曹悉奥, 梅轩, 等. 铝合金-碳纤维增强聚丙烯混合帽型梁热成形数值模拟[J]. 复合材料学报, 2024, 41(3): 1581-1591.

    WANG Zhen, CAO Xi’ao, MEI Xuan, et al. Numerical simulation of hot forming of aluminum-carbon fiber reinforced polypropylene hybrid hat-shaped rail[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1581-1591 (in Chinese).
    [7] 王健, 于跃, 朱伟, 等. 玻璃纤维/聚丙烯复合材料层合板拉深成型性[J]. 复合材料学报, 2018, 35(10): 2640-2650.

    WANG Jian, YU Yue, ZHU Wei, et al. Deep drawing formability of glass fiber/polypropylene composite laminates[J]. Acta Materiae Compositae Sinica, 2018, 35(10): 2640-2650 (in Chinese).
    [8] 梅鸣, 周珺晗, 韦凯. 纤维增强复合材料自动化成型中织物变形研究进展[J]. 复合材料学报, 2023, 40(5): 2507-2524.

    MEI Ming, ZHOU Junhan, WEI Kai. Advance of fabric deformation in automated forming of fiber reinforced composites[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2507-2524 (in Chinese).
    [9] 李宏福, 姚瑞娟, 王会平, 等. 碳纤维/尼龙6预浸料的制备及盒体的热冲压成型工艺[J]. 复合材料学报, 2019, 36(1): 51-59.

    LI Hongfu, YAO Ruijuan, WANG Huiping, et al. Preparation of continuous carbon fiber/polyamide 6 prepreg and rectangular box forming by hot stamping[J]. Acta Materiae Compositae Sinica, 2019, 36(1): 51-59(in Chinese).
    [10] 张衡, 严飙, 龚友坤, 等. 碳纤维机织物增强热塑性树脂复合材料热冲压叠层模型[J]. 复合材料学报, 2017, 34(12): 2741-2746.

    ZHANG Heng, YAN Biao, GONG Youkun, et al. A lamination model for thermostamping of carbon woven fabric reinforced thermoplastic resin composites[J]. Acta Materiae Compositae Sinica, 2017, 34(12): 2741-2746(in Chinese).
    [11] CHEN S, HARPER L T, ENDRUWEIT A, et al. Formability optimisation of fabric preforms by controlling material draw-in through in-plane constraints[J]. Composites Part A: Applied Science and Manufacturing, 2015, 76: 10-19. doi: 10.1016/j.compositesa.2015.05.006
    [12] 彭雄奇, 堵同亮, 郭早阳. 机织复合材料各向异性超弹性本构模型[J]. 机械工程学报, 2012, 48(20): 48-53. doi: 10.3901/JME.2012.20.045

    PENG Xiongqi, DU Tongliang, GUO Zaoyang. Anisotropic hyperelastic constitutive model for woven composite fabrics under large deformation[J]. Journal of Mechanical Engineering, 2012, 48(20): 48-53 (in Chinese). doi: 10.3901/JME.2012.20.045
    [13] 鲍益东, 何瑞, 宋云鹤, 等. 二维编织碳纤维增强树脂复合材料一步法铺层展开[J]. 复合材料学报, 2022, 39(7): 3144-3155.

    BAO Yidong, HE Rui, SONG Yunhe, et al. One-step spreading for 2D woven carbon fiber reinforced plastics[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3144-3155(in Chinese).
    [14] 孔令国, 王继辉, 陈宏达, 等. 压边力对非平衡平纹机织物预制体成型作用规律[J]. 复合材料学报, 2022, 39(4): 1798-1812.

    KONG Lingguo, WANG Jihui, CHEN Hongda, et al. Influence of blank-holder force on the draping process of unbalanced plain woven fabric preform[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1798-1812 (in Chinese).
    [15] 吕柄熠, 王时玉, 校金友, 等. 基于非正交本构模型的热塑性机织物预浸料宽温域赋形褶皱缺陷仿真方法[J]. 复合材料学报, 2023, 40(4): 2355-2364.

    LYU Bingyi, WANG Shiyu, XIAO Jinyou, et al. A simulation method of forming wrinkle defects in thermoplastic woven fabric prepregs in a wide temperature range based on non-orthogonal constitutive model[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2355-2364 (in Chinese).
    [16] BORIA S, SCATTINA A, BELINGARDI G. Impact behavior of a fully thermoplastic composite[J]. Composite Structures, 2017, 167: 63-75. doi: 10.1016/j.compstruct.2017.01.083
    [17] PRIEM C, OTHMAN R, ROZYCKI P, et al. Experimental investigation of the crash energy absorption of 2.5D-braided thermoplastic composite tubes[J]. Composite Structures, 2014, 116: 814-826. doi: 10.1016/j.compstruct.2014.05.037
    [18] BORIA S, SCATTINA A, BELINGARDI G. Axial crushing of metal-composite hybrid tubes: Experimental analysis[J]. Procedia Structural Integrity, 2018, 8: 102-117. doi: 10.1016/j.prostr.2017.12.012
    [19] 肖杰, 施涵, 余许多, 等. 碳纤维增强环氧树脂基复合材料轴管的低速冲击失效机制及剩余压缩性能[J]. 复合材料学报, 2021, 38(11):3640-3651.

    XIAO Jie, SHI Han, YU Xuduo, et al. Failure mechanisms and residual compression performance of carbon fiber reinforced epoxy composite shaft tubessubjected to low velocity impact[J]. Acta Materiae Compositae Sinica, 2021, 38(11):3640-3651(in Chinese).
    [20] 沈勇, 柯俊, 吴震宇. 不同编织角碳纤维增强聚合物复合材料-Al方管的吸能特性[J]. 复合材料学报, 2020, 37(3): 591-600.

    SHEN Yong, KE Jun, WU Zhenyu. Energy-absorbing characteristics of carbon fiber reinforced polymer composite-Al square tubes with different braiding angles[J]. Acta Materiae Compositae Sinica, 2020, 37(3): 591-600(in Chinese).
    [21] NAJAFI A, RAIS-ROHANI M. Sequential coupled process-performance simulation and multi-objective optimization of thin-walled tubes[J]. Materials & Design, 2012, 41: 89-98.
    [22] NAJAFI A, ACAR E, RAIS-ROHANI M. Multi-objective robust design of energy-absorbing components using coupled process–performance simulations[J]. Engineering Optimization, 2014, 46(2): 146-164. doi: 10.1080/0305215X.2012.753437
    [23] KÄRGER L, BERNATH A, FRITZ F, et al. Development and validation of a CAE chain for unidirectional fibre reinforced composite components[J]. Composite Structures, 2015, 132: 350-358. doi: 10.1016/j.compstruct.2015.05.047
    [24] CAO J, AKKERMAN R, BOISSE P, et al. Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(6): 1037-1053. doi: 10.1016/j.compositesa.2008.02.016
    [25] 朱国华, 成艾国, 王振, 等. 电动车轻量化复合材料车身骨架多尺度分析[J]. 机械工程学报, 2016, 52(6): 145-152. doi: 10.3901/JME.2016.06.145

    ZHU Guohua, CHENG Aiguo, WANG Zhen, et al. Analysis of lightweight composite body structure for electrical vehicle using the multiscale approach[J]. Journal of Mechanical Engineering, 2016, 52(6): 145-152(in Chinese). doi: 10.3901/JME.2016.06.145
    [26] 宋凯, 王振, 朱国华, 等. 单向碳纤维复合材料锥管轴向吸能特性研究[J]. 振动与冲击, 2018, 37(7): 172-178.

    SONG Kai, WANG Zhen, ZHU Guohua, et al. Axial energy absorption characteristics of unidirectional carbon-fiber composite cone tubes[J]. Journal of Vibration and Shock, 2018, 37(7): 172-178(in Chinese).
    [27] WANG Z, XIE H, LUO Q T, et al. Optimizaition for formability of plain woven carbon fiber fabrics[J]. International Journal of Mechanical Sciences, 2021, 197: 106318. doi: 10.1016/j.ijmecsci.2021.106318
    [28] WANG Z, ZHANG W W, LUO Q T, et al. A novel failure criterion based upon forming limit curve for thermoplastic composites[J]. Composites Part B: Engineering, 2020, 202: 108320. doi: 10.1016/j.compositesb.2020.108320
    [29] XIAO J R, GAMA B A, GILLESPIE J W. Progressive damage and delamination in plain weave S-2 glass/SC-15 composites under quasi-static punch-shear loading[J]. Composite Structures, 2007, 78(2): 182-196. doi: 10.1016/j.compstruct.2005.09.001
    [30] KIM N H. Introduction to nonlinear finite element analysis[M]. New York: Springer New York, 2014:
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  210
  • HTML全文浏览量:  216
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-08
  • 修回日期:  2023-09-14
  • 录用日期:  2023-10-10
  • 网络出版日期:  2023-10-17
  • 刊出日期:  2024-06-15

目录

    /

    返回文章
    返回