留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨含量对铜-石墨-乳化沥青复合材料组织和性能的影响

周晓龙 李金涛 熊爱虎 曹函星 王立惠

周晓龙, 李金涛, 熊爱虎, 等. 石墨含量对铜-石墨-乳化沥青复合材料组织和性能的影响[J]. 复合材料学报, 2021, 38(11): 3775-3784. doi: 10.13801/j.cnki.fhclxb.20210121.001
引用本文: 周晓龙, 李金涛, 熊爱虎, 等. 石墨含量对铜-石墨-乳化沥青复合材料组织和性能的影响[J]. 复合材料学报, 2021, 38(11): 3775-3784. doi: 10.13801/j.cnki.fhclxb.20210121.001
ZHOU Xiaolong, LI Jintao, XIONG Aihu, et al. Effects of graphite content on microstructure and properties of Cu-graphite-emulsified asphalt composites[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3775-3784. doi: 10.13801/j.cnki.fhclxb.20210121.001
Citation: ZHOU Xiaolong, LI Jintao, XIONG Aihu, et al. Effects of graphite content on microstructure and properties of Cu-graphite-emulsified asphalt composites[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3775-3784. doi: 10.13801/j.cnki.fhclxb.20210121.001

石墨含量对铜-石墨-乳化沥青复合材料组织和性能的影响

doi: 10.13801/j.cnki.fhclxb.20210121.001
基金项目: 云南省科技计划重点项目 (2017FA027)
详细信息
    通讯作者:

    周晓龙,博士,教授,博士生导师,研究方向为金属基复合材料  E-mail:kmust502@163.com

  • 中图分类号: TB333;TG146.1

Effects of graphite content on microstructure and properties of Cu-graphite-emulsified asphalt composites

  • 摘要: 以电解铜粉与石墨粉为原料,阴离子乳化沥青为粘结剂,采用粉末冶金技术制备了铜-石墨-乳化沥青复合材料,并通过XRD、EDS和SEM对石墨含量为2wt%~8wt%的铜-石墨-乳化沥青复合材料微观组织进行表征,研究了铜-石墨-乳化沥青复合材料的摩擦磨损性能、力学和电学性能,并与不含乳化沥青的铜-石墨复合材料进行比较。结果表明,乳化沥青可以有效防止石墨颗粒的聚集,对石墨和铜基体起粘结作用;在两相界面处几乎没有间隙,并且产生了层片状石墨;石墨含量为4wt%的试样磨损量最小,仅为0.0049 g,摩擦系数约为0.025;增加载荷和石墨含量会增大磨损量,但会降低摩擦系数;在滑动摩擦期间,磨损表面会出现裂纹、犁沟、凹陷、小颗粒和层片状结构,但其程度要比不含乳化沥青的复合材料低。

     

  • 图  1  铜-石墨-乳化沥青复合材料试样烧结过程示意图

    Figure  1.  Schematic diagram of sintering process of Cu-graphite-emulsified asphalt composite samples

    图  2  含4wt%石墨的铜-石墨-乳化沥青复合材料的XRD图谱

    Figure  2.  XRD pattern of the Cu-graphite-emulsified asphalt composites with 4wt% graphite

    图  3  含4wt%石墨的铜-石墨-乳化沥青复合材料的SEM图像和EDS图谱

    Figure  3.  SEM image and EDS spectra of Cu-graphite-emulsified asphalt composites with 4wt% graphite

    图  4  不同石墨含量下烧结态与复压态的铜-石墨-乳化沥青复合材料的SEM图像 ((a)、(b)中不含乳化沥青)

    Figure  4.  SEM images of sintered and recompressed Cu-graphite-emulsified asphalt composites with different graphite contents (Without emulsified asphalt in (a) and (b))

    图  5  不同石墨含量的铜-石墨-乳化沥青复合材料界面的SEM图像

    Figure  5.  SEM images of the interface of Cu-graphite-emulsified asphalt composites with different graphite contents

    图  6  不同石墨含量的铜-石墨-乳化沥青复合材料试样在不同状态下的密度

    Figure  6.  Densities of Cu-graphite-emulsified asphalt composite samples with different graphite contents in different states

    图  7  不同石墨含量的铜-石墨-乳化沥青复合材料试样在不同状态下的维氏硬度

    Figure  7.  Vickers hardness of Cu-graphite-emulsified asphalt composite samples with different graphite contents in different states

    图  8  铜-石墨-乳化沥青复合材料试样的电阻率随不同石墨含量的变化

    Figure  8.  Resistivity of Cu-graphite-emulsified asphalt composite samples varied with different graphite contents

    图  9  不同石墨含量和4wt%石墨含量铜-石墨-乳化沥青复合材料试样的磨损量与摩擦系数

    Figure  9.  Friction loss and friction coefficient of Cu-graphite-emulsified asphalt composite samples with different graphite contents and 4wt% graphite content

    图  10  不同条件和不同石墨含量铜-石墨-乳化沥青复合材料试样的摩擦磨损形貌

    Figure  10.  Friction and wear morphologies of Cu-graphite-emulsified asphalt composite samples with different conditions and different graphite contents

  • [1] KUBOTA Y, NAGASAKA S, MIYAUCHI T, et al. Sliding wear behavior of copper alloy impregnated C/C composites under an electrical current[J]. Wear,2013,302(2):1492-1498.
    [2] DING T, CHEN G X, BU J, et al. Effect of temperature and arc discharge on friction and wear behaviors of carbon strip/copper contact wire in pantograph-catenary systems[J]. Wear,2011,271(9):1629-1636.
    [3] SHANGGUAN B, ZHANG Y, XING J, et al. Comparative study on wear behaviors of metal-impregnated carbon material and C/C composite under electrical sliding[J]. Tribology Transactions,2010,53(6):933-938. doi: 10.1080/10402004.2010.510622
    [4] HE D H, MANORY R R, GRADY N. Wear of railway contact wires against current collector materials[J]. Wear,1998,215(1):146-155.
    [5] WANG Y A, LI J X, YAN Y, et al. Effect of electrical current on tribological behavior of copper-impregnated metallized carbon against a Cu–Cr–Zr alloy[J]. Tribology International,2012,50:26-34. doi: 10.1016/j.triboint.2011.12.022
    [6] YIN J, ZHANG H, TAN C, et al. Effect of heat treatment temperature on sliding wear behavior of C/C-Cu composites under electric current[J]. Wear,2014,312(1):91-95.
    [7] ZHAO H, LIU L, WU Y, et al. Investigation on wear and corrosion behavior of Cu–graphite composites prepared by electroforming[J]. Composites Science and Technology,2007,67(6):1210-1217. doi: 10.1016/j.compscitech.2006.05.013
    [8] NAGASAWA H, KATO K. Wear mechanism of copper alloy wire sliding against iron-base strip under electric current[J]. Wear,1998,216(2):179-183. doi: 10.1016/S0043-1648(97)00162-2
    [9] RAVINDRAN P, MANISEKAR K, NARAYANASAMY P, et al. Application of factorial techniques to study the wear of Al hybrid composites with graphite addition[J]. Materials & Design,2012,39(8):42-54.
    [10] CANAKCI, AYKUT, VAROL, et al. Prediction of the influence of processing parameters on synthesis of Al2024-B4C composite powders in a planetary mill using an artificial neural network[J]. Science and Engineering of Composite Materials,2014,21(3):411-420. doi: 10.1515/secm-2013-0148
    [11] DASH K, RAY B C, CHAIRA D. Synthesis and characterization of copper-alumina metal matrix composite by conventional and spark plasma sintering[J]. Journal of Alloys & Compounds,2011,516:78-84.
    [12] KIM K T, CHA S I, HONG S H. Hardness and wear resistance of carbon nanotube reinforced Cu matrix nanocomposites[J]. Materials Science & Engineering A,2007,449:46-50.
    [13] SAMAL C P, PARIHAR J S, CHAIRA D. The effect of milling and sintering techniques on mechanical properties of Cu–graphite metal matrix composite prepared by powder metallurgy route[J]. Journal of Alloys & Compounds,2013,569:95-101.
    [14] HE D H, MANORY R. A novel electrical contact material with improved self-lubrication for railway current collectors[J]. Wear,2001,249(7):626-636. doi: 10.1016/S0043-1648(01)00700-1
    [15] CHEN W X, TU J P, WANG L Y, et al. Tribological application of carbon nanotubes in a metal-based composite coating and composites[J]. Fuel & Energy Abstracts,2003,41(2):215-222.
    [16] WAN Y Z, WANG Y L, LUO H L, et al. Effects of fiber volume fraction, hot pressing parameters and alloying elements on tensile strength of carbon fiber reinforced copper matrix composite prepared by continuous three-step electrodeposition[J]. Materials Science & Engineering A,2000,288(1):26-33.
    [17] ŠTEFÁNIK P, ŠEBO P. Thermal stability of copper coating on carbon fibers[J]. Journal of Materials Science Letters,1993,12(14):1083-1085. doi: 10.1007/BF00420528
    [18] TANG Y, LIU H, ZHAO H, et al. Friction and wear properties of copper matrix composites reinforced with short carbon fibers[J]. Materials & Design,2008,29(1):257-261.
    [19] RAJKUMAR K, ARAVINDAN S. Microwave sintering of copper-graphite composites[J]. Journal of Materials Processing Technology,2009,209(15):5601-5605.
    [20] KESTURSATYA M, KIM J K, ROHATGI P K. Wear performance of copper-graphite composite and a leaded copper alloy[J]. Materials Science & Engineering A,2003,339(1):150-158.
    [21] CHEN L Y, XU J Q, CHOI H, et al. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles[J]. Nature,2015,528(7583):539-543. doi: 10.1038/nature16445
    [22] EUSTATHOPOULOS N. Dynamics of wetting in reactive metal/ceramic systems[J]. Acta Materialia,1998,46(7):2319-2327.
    [23] ZHANG D, ZHAN Z. Preparation of graphene nanoplatelets-copper composites by a modified semi-powder method and their mechanical properties[J]. Journal of Alloys and Compounds,2016,658:663-671. doi: 10.1016/j.jallcom.2015.10.252
    [24] CHEN F, YING J, WANG Y, et al. Effects of graphene content on the microstructure and properties of copper matrix composites[J]. Carbon,2016,96:836-842. doi: 10.1016/j.carbon.2015.10.023
    [25] JIANG R R, ZHOU X F, FANG Q L, et al. Coppergraphene bulk composites with homogeneous graphene dispersion and enhanced mechanical properties[J]. Materials Science & Engineering A,2016,654:124-130.
    [26] SUN S J, ZHANG M D. Interface characteristics and mechanical properties of carbon fibre reinforced copper composites[J]. Journal of Materials Science,1991,26(21):5762-5766. doi: 10.1007/BF01130112
    [27] 许斌, 李铁虎. 炭/炭复合材料用高性能浸渍剂沥青的研究[J]. 复合材料学报, 2003(2):71-75. doi: 10.3321/j.issn:1000-3851.2003.02.013

    XU B, LI T H. Study on the high performance impregnating pitch used in C/C composite[J]. Acta Materiae Compositae Sinica,2003(2):71-75(in Chinese). doi: 10.3321/j.issn:1000-3851.2003.02.013
    [28] 钟强, 杨永斌, 李骞, 等. 型焦煤沥青粘结性能的强化[J]. 中南大学学报, 2016, 47(12):3971-3976.

    ZHONG Q, YANG Y B, LI Q, et al. Intensification cohesiveness of coal tar pitch used in formed coke[J]. Journal of Central South University,2016,47(12):3971-3976(in Chinese).
    [29] VAROL T, CANAKCI A. The effect of type and ratio of reinforcement on the synthesis and characterization Cu-based nanocomposites by flake powder metallurgy[J]. Journal of Alloys and Compounds,2015,649:1066-1074. doi: 10.1016/j.jallcom.2015.07.008
    [30] TASKIN M, CALIGULU U, GUR A K. Modeling adhesive wear resistance of Al-Si-Mg-/SiCp PM compacts fabricated by hot pressing process, by means of ANN[J]. International Journal of Advanced Manufacturing Technology,2008,37(7):715-721.
    [31] 杨永斌, 钟强, 姜涛, 等. 煤沥青型焦制备与固结机理[J]. 中南大学学报, 2016, 47(7):2181-2188.

    YANG Y B, ZHONG Q, JIANG T, et al. Preparation and mechanism of formed coke with coal tar pitch as binder[J]. Journal of Central South University,2016,47(7):2181-2188(in Chinese).
    [32] 郑云鹏, 马晓谦, 沙龙. 乳化沥青的形成机理及发展[J]. 山西建筑, 2008, 34(4):177-178.

    ZHENG Y P, MA X Q, SHA L. Formation mechanism and development of emulsion asphalt[J]. Shanxi Architecture,2008,34(4):177-178(in Chinese).
    [33] 虎增福. 乳化沥青及稀浆封层技术[M]. 北京: 人民交通出版社, 2001.

    HU Z F. Asphalt emulsion and slurry surfacing[M]. Beijing: China Communications Press, 2011(in Chinese).
    [34] 王长安, 吴育良, 郭敏怡, 等. 乳化沥青及其乳化剂的发展与应用[J]. 广州化学, 2006, 31(1):54-60.

    WANG C A, WU Y L, GUO M Y, et al. Development and applications of bitumen emulsion and its emulsifiers[J]. Guangzhou Chemistry,2006,31(1):54-60(in Chinese).
    [35] 魏炳伟. 铜-石墨烯复合材料制备和性能的研究[D]. 重庆: 重庆理工大学, 2014.

    WEI B W. Research on preparation and properties of copper-graphene composites[D]. Chongqing: Chongqing University of Technology, 2014(in Chinese).
    [36] LIU Z C, TU Z Q, LI Y F, et al. Synthesis of three-dimensional graphene from petroleum asphalt by chemical vapor deposition[J]. Materials Letters,2014,122:285-288. doi: 10.1016/j.matlet.2014.02.077
    [37] SUZUKI S, SHIBUTANI N, MIMURA K, et al. Improvement in strength and electrical conductivity of Cu–Ni–Si alloys by aging and cold rolling[J]. Journal of Alloys and Compounds,2006,417(1):116-120.
    [38] XIAO J K, ZHANG L, ZHOU K C, et al. Microscratch behavior of copper-graphite composite[J]. Tribology International,2013,38:57-60.
    [39] NIKONOVA R M, LARIONOVA N S, LADYANOV V I, et al. Influence of structural state of carbon on formation of mechanocomposites Cu–C[J]. Journal of Alloys and Compounds,2016,679:125-132.
    [40] OKU T, OKU T. Effects of titanium addition on the microstructure of carbon/copper composite materials[J]. Solid State Communications,2007,141(3):132-135. doi: 10.1016/j.ssc.2006.10.013
    [41] GRANDIN M, WIKLUND U. Wear phenomena and tribofilm formation of copper/copper-graphite sliding electrical contact materials[J]. Wear,2017,203:227-235.
    [42] HE D H, MANORY R, SINKIS H. A sliding wear tester for overhead wires and current collectors in light rail systems[J]. Wear,2000,239(1):10-20. doi: 10.1016/S0043-1648(99)00365-8
    [43] MA W, LU J, WANG B. Sliding friction and wear of Cu–graphite against 2024, AZ91D and Ti6Al4V at different speeds[J]. Wear,2009,266(11):1072-1081.
  • 加载中
图(10)
计量
  • 文章访问数:  987
  • HTML全文浏览量:  546
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-03
  • 录用日期:  2021-01-11
  • 网络出版日期:  2021-01-22
  • 刊出日期:  2021-11-01

目录

    /

    返回文章
    返回