留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

再生粗骨料混凝土静动态抗压强度离散性试验研究

王小娟 李润琳 周宏元 母崇元 乔崎云

王小娟, 李润琳, 周宏元, 等. 再生粗骨料混凝土静动态抗压强度离散性试验研究[J]. 复合材料学报, 2024, 41(6): 3097-3107. doi: 10.13801/j.cnki.fhclxb.20231113.001
引用本文: 王小娟, 李润琳, 周宏元, 等. 再生粗骨料混凝土静动态抗压强度离散性试验研究[J]. 复合材料学报, 2024, 41(6): 3097-3107. doi: 10.13801/j.cnki.fhclxb.20231113.001
WANG Xiaojuan, LI Runlin, ZHOU Hongyuan, et al. Experimental investigation on discreteness of quasi-static and dynamic compressive strength of recycled aggregate concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3097-3107. doi: 10.13801/j.cnki.fhclxb.20231113.001
Citation: WANG Xiaojuan, LI Runlin, ZHOU Hongyuan, et al. Experimental investigation on discreteness of quasi-static and dynamic compressive strength of recycled aggregate concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3097-3107. doi: 10.13801/j.cnki.fhclxb.20231113.001

再生粗骨料混凝土静动态抗压强度离散性试验研究

doi: 10.13801/j.cnki.fhclxb.20231113.001
基金项目: 国家自然科学基金(52278477;52178096);北京理工大学爆炸科学与技术国家重点实验室开放基金(KFJJ23-12M)
详细信息
    通讯作者:

    周宏元,博士,教授,博士生导师,研究方向为吸能材料、结构防护、结构抗爆设计 E-mail: hzhou@bjut.edu.cn

  • 中图分类号: TU528;TB332

Experimental investigation on discreteness of quasi-static and dynamic compressive strength of recycled aggregate concrete

Funds: National Natural Science Foundation of China (52278477; 52178096); Open Foundation of State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology (KFJJ23-12M)
  • 摘要: 为研究再生粗骨料(RCA)替代率和应变率对再生粗骨料混凝土(RAC)抗压强度离散性的影响,制备了3种不同RCA替代率的RAC (0%、50%、100%),分别进行准静态压缩及霍普金森压杆(SHPB)试验,于概率统计分析理论,对RAC抗压强度结果进行分析讨论。结果表明:准静态压缩下,RAC抗压强度离散程度随RCA替代率增加变化不显著,但表现出先增加后减小的趋势;SHPB试验应变率为50~120 s−1时,受RCA替代率和应变率的共同影响,同一应变率下RAC动态抗压强度离散程度随RCA替代率增加而增加,同一RCA替代率下RAC动态抗压强度离散程度随应变率增加逐渐减小。此外,对传统Weibull分布模型引入替代率和应变率参数进行修正,考虑到抗压强度离散性可能影响结构设计的安全性,提出了在任意保证率下具有不同RCA替代率的RAC动态抗压强度预测公式。

     

  • 图  1  准静态压缩试验下再生混凝土(RAC)试件的破坏模式

    Figure  1.  Failure mode of RAC specimens under quasi-static compression

    图  2  准静态压缩下再生混凝土抗压强度

    Figure  2.  Compressive strength of RAC under quasi-static compression

    图  3  霍普金森压杆(SHPB)试验下RAC试件的破坏模式

    Figure  3.  Failure modes of RAC specimens in split Hopkinson pressure bar (SHPB) test

    图  4  SHPB试验再生混凝土试件抗压强度

    Figure  4.  Compressive strength of RAC specimens in SHPB test

    图  5  准静态压缩试验下RAC抗压强度分布图

    Figure  5.  Distribution of compressive strength of RAC under quasi-static compression

    μ1, σ1—Mean and standard deviation of the normal distribution; m, β—Shape and scale parameters of the Weibull distribution; μ2, σ2—Location and scale parameters of the lognormal distribution; R2—Goodness of fit

    图  6  准静态压缩下再生混凝土抗压强度Weibull分布图

    Figure  6.  Weibull distribution of compressive strength of RAC under quasi-static compression

    σ—Compressive strength of RAC; Pf(σ)—Probability of failure at stress σ

    图  7  SHPB试验中RAC动态抗压强度的修正Weibull分布图

    Figure  7.  Modified Weibull distribution of RAC compressive strength in SHPB test

    PM(σ)—Probability of failure at stress σ based on the modified model

    图  8  不同应变率下不同RCA替代率的RAC的离散系数CM

    Figure  8.  Dispersion coefficient CM of RAC with different RCA substitute rates and strain rates

    图  9  RAC试验值与预测值比较

    Figure  9.  Comparison between experimental and prediction results of RAC

    图  10  不同保证率R下的RAC动态抗压强度σR增长情况

    Figure  10.  Dynamic compressive strength σR growth of RAC with different levels of reliability R

    表  1  普通硅酸盐水泥 P·O 42.5的矿物成分

    Table  1.   Mineral components of ordinary Portland cement P·O 42.5

    Al2O3/wt% SiO2/wt% Fe2O3/wt% CaO/wt% SO3/wt% R2O/wt% MgO/wt% Other/wt%
    4.42 21.65 2.61 62.93 2.27 0.83 2.92 2.37
    Note: R2O—Basic oxide ( Na2O, K2O).
    下载: 导出CSV

    表  2  粗骨料性能指标

    Table  2.   Performance index of coarse aggregates

    Aggregate type Gradation/mm Apparent density/(kg·m−3) Crush index/% Mortar content/% Water absorption/%
    NCA 5-12.5 2814 8.8 0 0.40
    RCA 5-12.5 2640 17.7 34 3.85
    Notes: NCA—Natural coarse aggregate; RCA—Recycled coarse aggregate.
    下载: 导出CSV

    表  3  试验配合比 (kg/m3)

    Table  3.   Mix design proportions of tests (kg/m3)

    Specimen Cement Sand NCA RCA Water Extra water
    RAC-0 462.5 596.09 1156.41 0 185 0
    RAC-50 462.5 596.09 578.21 578.21 185 17.35
    RAC-100 462.5 596.09 0 1156.41 185 34.69
    Notes: RAC-0, RAC-50, RAC-100—Recycled aggregate concrete (RAC) with 0%, 50%, 100% substitute rate of recycled coarse aggregate, respectively.
    下载: 导出CSV

    表  4  准静态压缩下RAC抗压强度Weibull参数

    Table  4.   Weibull parameters for compressive strength of RAC under quasi-static compression

    Specimen Linear fitting equation
    Y=aX+b
    Weibull parameter E(σ)/MPa S/MPa C K-S
    goodness-of-test
    a b R2 m β Dn D
    RAC-0 22.80 79.43 0.92 22.80 32.58 31.817 1.737 0.054 0.103 0.215
    RAC-50 21.47 73.41 0.93 21.47 30.54 29.783 1.723 0.058 0.104
    RAC-100 22.61 74.55 0.98 22.61 27.06 26.415 1.454 0.055 0.069
    Notes: E(σ)—Mathematical expectation; S—Variance; C—Dispersion coefficient; K-S—Kolmogorov-Smirnov; a, b—Slope and intercept of the linear fitting equation; Dn—Maximum deviation; D—Critical values for n data at a confidence level of α.
    下载: 导出CSV

    表  5  不同保证率下的RAC抗压强度

    Table  5.   Compressive strength of RAC at different levels of reliability

    Specimen σmean/MPa σ0.75/MPa σ0.85/MPa σ0.95/MPa
    RAC-0 31.82 30.85 30.09 28.60
    RAC-50 29.78 28.82 28.06 25.47
    RAC-100 26.42 25.61 24.97 22.77
    Notes: σmean—Mean compressive strength; σ0.75, σ0.85, σ0.95—Compressive strength with a guarantee of 0.75, 0.85, 0.95, respectively.
    下载: 导出CSV

    表  6  SHPB试验下RAC抗压强度修正Weibull参数

    Table  6.   Modified Weibull parameters for compressive strength of RAC in SHPB test

    Specimen Strain
    rate/s−1
    Fitting curve Modified Weibull parameter R2 EM(σ)/
    MPa
    SM/
    MPa
    CM K-S goodness-of-test
    Dn D
    m β η δ
    RAC-0 50.4 Y=10.62X−42.67 10.62 13.53 −3.79 1.5 0.92 52.20 0.74 0.014 0.099 0.215
    68.0 Y=11.05X−45.18 11.05 13.89 −3.82 0.97 57.06 0.71 0.012 0.111
    89.1 Y=11.46X−47.85 11.46 14.37 −3.85 0.98 62.11 0.70 0.011 0.095
    117.3 Y=12.08X−51.68 12.07 15.48 −3.90 0.98 69.20 0.70 0.010 0.094
    RAC-50 50.8 Y=8.34X−32.79 8.34 13.05 −2.94 0.94 49.23 0.85 0.018 0.135
    68.7 Y=10.15X−40.66 10.15 13.36 −3.43 0.97 53.13 0.75 0.014 0.123
    88.6 Y=10.88X−44.93 10.88 14.30 −3.62 0.92 60.70 0.73 0.012 0.087
    118.2 Y=11.86X−50.07 11.86 15.43 −3.72 0.96 66.03 0.73 0.011 0.134
    RAC-100 53.2 Y=7.19X−27.95 7.19 12.66 −2.53 0.96 45.37 0.96 0.022 0.119
    70.5 Y=8.12X−32.24 8.12 13.99 −2.62 0.94 49.47 1.00 0.020 0.095
    89.2 Y=10.55X−43.06 10.55 14.73 −3.35 0.97 56.23 0.80 0.014 0.142
    121.3 Y=11.24X−47.02 11.24 15.84 −3.42 0.98 62.86 0.80 0.013 0.073
    Notes: EM(σ), SM, and CM—Mathematical expectation, variance, and dispersion coefficient based on the modified model; η—Strain rate effect parameter; δ—Substitute rate parameter.
    下载: 导出CSV
  • [1] 杜修力, 韩亚强, 金浏, 等. 骨料空间分布对混凝土压缩强度及软化曲线影响统计分析[J]. 水利学报, 2015, 46(6): 631-639.

    DU Xiuli, HAN Yaqiang, JIN Liu, et al. Statistical investigation on effects of aggregate distribution on concrete compression strength and the descending part of stress-strain curve[J]. Journal of Hydraulic Engineering, 2015, 46(6): 631-639(in Chinese).
    [2] GUNEYISI E, GESOGLU M, KAREEM Q, et al. Effect of different substitution of natural aggregate by recycled aggregate on performance characteristics of pervious concrete[J]. Materials and Structures, 2016, 49(1-2): 521-536. doi: 10.1617/s11527-014-0517-y
    [3] 王俊辉, 黄悦, 杨国涛, 等. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(S1): 278-286.

    WANG Junhui, HUANG Yue, YANG Guotao, et al. Research progress on compressive properties of recycled aggregate concrete[J]. Materials Reports, 2022, 36(S1): 278-286(in Chinese).
    [4] 商效瑀, 杨经纬, 李江山. 基于CT图像的再生混凝土细观破坏裂纹分形特征[J]. 复合材料学报, 2020, 37(7): 1774-1784.

    SHANG Xiaoyu, YANG Jingwei, LI Jiangshan. Fractal characteristics of meso-failure crack in recycled coarse aggregate concrete based on CT image[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1774-1784(in Chinese).
    [5] XIAO J Z. Recycled aggregate concrete structures[M]. Berlin: Springer-Verlag, 2018: 144-146.
    [6] GUO J L, CHEN Q J, CHEN W S, et al. Tests and numerical studies on strain-rate effect on compressive strength of recycled aggregate concrete[J]. Journal of Materials in Civil Engineering, 2019, 31(11): 04019281. doi: 10.1061/(ASCE)MT.1943-5533.0002937
    [7] LU Y B, CHEN X, TENG X, et al. Dynamic compressive behavior of recycled aggregate concrete based on split Hopkinson pressure bar tests[J]. Latin American Journal of Solids and Structures, 2014, 11(1): 131-141. doi: 10.1590/S1679-78252014000100008
    [8] XIAO J Z, LI L, SHEN L M, et al. Compressive behaviour of recycled aggregate concrete under impact loading[J]. Cement and Concrete Research, 2015, 71: 46-55. doi: 10.1016/j.cemconres.2015.01.014
    [9] 陈海霞, 宋学庆. 再生骨料混凝土强度离散性试验研究[J]. 西安科技大学学报, 2021, 41(2): 290-297. doi: 10.13800/j.cnki.xakjdxxb.2021.0213

    CHEN Haixia, SONG Xueqing. Experimental study on the strength dispersion of recycled aggregates concrete[J]. Journal of Xi'an University of Science and Technology, 2021, 41(2): 290-297(in Chinese). doi: 10.13800/j.cnki.xakjdxxb.2021.0213
    [10] 赵雨, 刘元珍, 王文婧, 等. 再生粗骨料取代率对再生保温混凝土抗压强度离散性影响[J]. 科学技术与工程, 2017, 17(13): 275-279. doi: 10.3969/j.issn.1671-1815.2017.13.051

    ZHAO Yu, LIU Yuanzhen, WANG Wenjing, et al. Influence of recycled coare aggregate replacement rate on the discreteness of the compressire strength of recycled aggregate thermal insulation concrete[J]. Science Technology and Engineering, 2017, 17(13): 275-279(in Chinese). doi: 10.3969/j.issn.1671-1815.2017.13.051
    [11] 全国混凝土标准化技术委员会. 混凝土用再生粗骨料: GB/T 25177—2010[S]. 北京: 中国标准出版社, 2010.

    National Technical Committee 458 on Concrete of Standardization Administration of China. Recycled coarse aggregate for concrete: GB/T 25177—2010[S]. Beijing: China Standards Press, 2010(in Chinese).
    [12] 鲍玖文, 李树国, 张鹏, 等. 再生粗骨料硅烷浸渍处理对混凝土介质传输性能的影响[J]. 复合材料学报, 2020, 37(10): 2602-2609. doi: 10.13801/j.cnki.fhclxb.20200316.002

    BAO Jiuwen, LI Shuguo, ZHANG Peng, et al. Effect of recycled coarse aggregate after strengthening by silane impregnation on mass transport of concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2602-2609(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200316.002
    [13] 王礼立. 应力波基础[M]. 北京: 国防工业出版社, 2005: 52-54.

    WANG Lili. Foundation of stess waves[M]. Beijing: National Defense Industry Press, 2005: 52-54(in Chinese).
    [14] 王兴国, 姜茂林, 陈旭, 等. 不同预浸骨料-PVA纤维对再生混凝土力学性能的影响[J]. 复合材料学报, 2022, 39(3): 1205-1214.

    WANG Xingguo, JIANG Maolin, CHEN Xu, et al. Effect of different pre-soaked aggregate-PVA fiber on the mechanical properties of recycled aggregate concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1205-1214(in Chinese).
    [15] 李为民, 许金余, 沈刘军, 等. 玄武岩纤维混凝土的动态力学性能[J]. 复合材料学报, 2008(2): 135-142. doi: 10.3321/j.issn:1000-3851.2008.02.023

    LI Weimin, XU Jinyu, SHEN Liujun, et al. Dynamic mechanical properties of basalt fiber reinforced concrete using a split Hopkinson pressure bar[J]. Acta Materiae Compositae Sinica, 2008(2): 135-142(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.02.023
    [16] ZHOU H Y, ZHOU H Z, WANG X J, et al. Static size effect of recycled coarse aggregate concrete: Experimental study, meso-scale simulation, and theoretical analysis[J]. Structures, 2021, 34: 2996-3012. doi: 10.1016/j.istruc.2021.09.050
    [17] PAJAK M, JANISZEWSKI J. Influence of aggregate and recycled steel fibres on the strain rate sensitivity of mortar and concrete[J]. Construction and Building Materials, 2023, 363: 129855. doi: 10.1016/j.conbuildmat.2022.129855
    [18] 谢友均, 王猛, 马昆林, 等. 不同养护温度下蒸养混凝土的冲击性能[J]. 建筑材料学报, 2020, 23(3): 521-528, 536.

    XIE Youjun, WANG Meng, MA Kunlin, et al. Impact mechanical characteristics of steam cured concrete under different curing temperatures[J]. Journal of Building Materials, 2020, 23(3): 521-528, 536(in Chinese).
    [19] 王国盛, 路德春, 杜修力. 混凝土材料真实动态强度及率效应机理研究[J]. 工程力学, 2018, 35(6): 58-67.

    WANG Guosheng, LU Dechun, DU Xiuli, et al. Research on the actual dynamic strength and the rate effect mechanisms for concrete materials[J]. Engineering Mechanics, 2018, 35(6): 58-67.
    [20] 王海龙, 李庆斌. 不同加载速率下饱和混凝土的劈拉试验研究及强度变化机理[J]. 工程力学, 2007, 24(2): 105-109. doi: 10.3969/j.issn.1000-4750.2007.02.018

    WANG Hailong, LI Qingbin. Experiments on saturated concrete under different splitting tensile rate and mechanism on strength change[J]. Engineering Mechanics, 2007, 24(2): 105-109(in Chinese). doi: 10.3969/j.issn.1000-4750.2007.02.018
    [21] LU D C, DU X L, WANG G S, et al. A three-dimensional elastoplastic constitutive model for concrete[J]. Computers & Structures, 2016, 163(8): 41-55.
    [22] 白卫峰, 李思蕾, 管俊峰, 等. 再生混凝土的单轴压缩动态力学性能[J]. 建筑材料学报, 2022, 25(5): 498-508. doi: 10.3969/j.issn.1007-9629.2022.05.009

    BAI Weifeng, LI Silei, GUAN Junfeng, et al. Dynamic mechanical properties of recycled concrete in uniaxial compression[J]. Journal of Building Materials, 2022, 25(5): 498-508(in Chinese). doi: 10.3969/j.issn.1007-9629.2022.05.009
    [23] 金浏, 韩亚强, 杜修力. 混凝土单轴动态拉伸强度随机性的统计特性分析[J]. 振动与冲击, 2016, 35(24): 6-13, 26.

    JIN Liu, HAN Yaqiang, DU Xiuli. Statistical investigationon the randomness of uniaxial dynamic tensile strengths of concrete[J]. Journal of Vibration and Shock, 2016, 35(24): 6-13, 26(in Chinese).
    [24] 李佳彬, 肖建庄, 黄健. 再生粗骨料取代率对混凝土抗压强度的影响[J]. 建筑材料学报, 2006, 9(3): 297-301. doi: 10.3969/j.issn.1007-9629.2006.03.008

    LI Jiabin, XIAO Jianzhuang, HUANG Jian. Influence of recycled coarse aggregate replacement percentages on compressive strength of concrete[J]. Journal of Building Materials, 2006, 9(3): 297-301(in Chinese). doi: 10.3969/j.issn.1007-9629.2006.03.008
    [25] 孔祥清, 何文昌, 邢丽丽, 等. 钢纤维-聚丙烯纤维混杂对再生混凝土抗冲击性能的影响[J]. 复合材料学报, 2020, 37(7): 1763-1773.

    KONG Xiangqing, HE Wenchang, XING Lili, et al. Effect of steel fiber-polypropylene fiber hybrid additon on impact resistance of recycled aggregate concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1763-1773(in Chinese).
    [26] 韩旭旭, 张程煜, 陈博, 等. 2D-SiCf/SiC复合材料抗拉强度统计分布规律[J]. 复合材料学报, 2019, 36(2): 434-440.

    HAN Xuxu, ZHANG Chengyu, CHEN Bo, et al. Statistical distribution of tensile strength of a 2D-SiCf/SiC composite[J]. Acta Materiae Compositae Sinica, 2019, 36(2): 434-440(in Chinese).
    [27] VU C C, HO N K, PHAM T A. Weibull statistical analysis and experimental investigation of size effects on the compressive strength of concrete-building materials[J]. Case Studies in Construction Materials, 2022, 17: e01231. doi: 10.1016/j.cscm.2022.e01231
    [28] PETTITT A N, STEPHENS M A. The Kolmogorov-Smirnov goodness-of-fit statistic with discrete and grouped data[J]. Technometrics, 1977, 19(2): 205-210. doi: 10.1080/00401706.1977.10489529
    [29] XU J S, HE X X. Size effect on the strength of a concrete member[J]. Engineering Fracture Mechanics, 1990, 35(4-5): 687-695. doi: 10.1016/0013-7944(90)90151-6
    [30] 肖建庄, 雷斌, 袁飚. 不同来源再生混凝土抗压强度分布特征研究[J]. 建筑结构学报, 2008(5): 94-100. doi: 10.3321/j.issn:1000-6869.2008.05.012

    XIAO Jianzhuang, LEI Bin, YUAN Biao. Compressive strength distribution of recycled aggregate concrete derived from different origins[J]. Journal of Building Structures, 2008(5): 94-100(in Chinese). doi: 10.3321/j.issn:1000-6869.2008.05.012
    [31] CHEN X D, WU S X, ZHOU J K. Compressive strength of concrete cores under high strain rates[J]. Journal of Performance of Constructed Facilities, 2015, 29(1): 06014005. doi: 10.1061/(ASCE)CF.1943-5509.0000586
    [32] 骆开静. 高性能再生混凝土动态力学特性及应变率效应研究[D]. 北京: 中国矿业大学(北京), 2018.

    LUO Kaijing. The research on dynamic mechanical characteristics of high performance recycled concrete and strain rate effect[D]. Beijing: China University of Mining and Technology (Beijing), 2018(in Chinese).
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  212
  • HTML全文浏览量:  146
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-24
  • 修回日期:  2023-09-24
  • 录用日期:  2023-11-02
  • 网络出版日期:  2023-11-14
  • 刊出日期:  2024-06-15

目录

    /

    返回文章
    返回