留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯(碳纳米管)-纤维素/角蛋白复合传感薄膜的制备

孙泽营 姜大伟 孙才英

孙泽营, 姜大伟, 孙才英. 石墨烯(碳纳米管)-纤维素/角蛋白复合传感薄膜的制备[J]. 复合材料学报, 2024, 41(6): 2964-2972. doi: 10.13801/j.cnki.fhclxb.20230927.001
引用本文: 孙泽营, 姜大伟, 孙才英. 石墨烯(碳纳米管)-纤维素/角蛋白复合传感薄膜的制备[J]. 复合材料学报, 2024, 41(6): 2964-2972. doi: 10.13801/j.cnki.fhclxb.20230927.001
SUN Zeying, JIANG Dawei, SUN Caiying. Preparation of graphene (carbon nanotubes)-cellulose/keratin composite sensing films[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 2964-2972. doi: 10.13801/j.cnki.fhclxb.20230927.001
Citation: SUN Zeying, JIANG Dawei, SUN Caiying. Preparation of graphene (carbon nanotubes)-cellulose/keratin composite sensing films[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 2964-2972. doi: 10.13801/j.cnki.fhclxb.20230927.001

石墨烯(碳纳米管)-纤维素/角蛋白复合传感薄膜的制备

doi: 10.13801/j.cnki.fhclxb.20230927.001
基金项目: 国家自然科学基金 (52273066)
详细信息
    通讯作者:

    姜大伟,博士,副教授,博士生导师,研究方向为柔性传感材料, E-mail: sharkwei12345@163.com

    孙才英,博士,教授,硕士生导师,研究方向为天然高分子材料, E-mail: sundeyee@126.com

  • 中图分类号: TB332

Preparation of graphene (carbon nanotubes)-cellulose/keratin composite sensing films

Funds: National Natural Science Foundation of China (52273066)
  • 摘要: 纤维素(CE)和角蛋白(FK)是来源丰富的天然材料,纤维素已经应用在生产生活各个领域,而作为羽毛主要成分的角蛋白大多被废弃了。把角蛋白复合到纤维素中,可以废物利用、改善纤维素材料的性能。首先以离子液体1-丁基-3-甲基咪唑氯盐([Bmim]Cl)溶解纤维素与角蛋白,以环氧氯丙烷(ECH)为交联剂使CE与FK联结成网络,利用离子液体对石墨烯或碳纳米管π-π堆积的屏蔽作用,使碳纳米管或者石墨烯很好地分散到纤维素/角蛋白交联网络复合体系,提升材料的导电性能与力学性能。所制得的复合薄膜拉伸强度和应变能达到64.8 MPa和58.0%,弯曲30º、60º、90º时,电阻会增加10%、14%和35%,可以通过薄膜形变引发的电阻变化监测人体运动行为的变化,因此,该复合薄膜有希望应用于监测运动的可穿戴电子设备,用于运动、医疗等领域。

     

  • 图  1  (a) GR(CNTs)-CE/FK复合薄膜制备示意图;(b) FK和CE的基本结构式;(c)~(e) CE、FK与ECH的可能交联方式

    Figure  1.  (a) Schematic diagram of GR(CNTs)-CE/FK composite film preparation; (b) Structural formulas of FK and CE ; (c)-(e) Possible linking way of CE and FK with crosslinker ECH

    图  2  交联前后的CE和FK的FTIR图谱

    Figure  2.  FTIR spectra of CE and FK before and after crosslinking

    图  3  GR(CNTs)-CE/FK复合薄膜FTIR图谱的比较

    Figure  3.  Comparison of FTIR spectra of GR(CNTs)-CE/FK composite films

    图  4  GR(CNTs)-CE/FK复合薄膜应力-应变曲线及外观图像

    Figure  4.  Stress-strain curves and external view of the GR(CNTs)-CE/FK composite films

    图  5  交联前后CE和FK的XRD图谱

    Figure  5.  XRD patterns of CE and FK before and after cross-linking

    图  6  GR(CNTs)-CE/FK复合薄膜的XRD图谱

    Figure  6.  XRD patterns of GR(CNTs)-CE/FK composite films

    图  7  GR(CNTs)-CE/FK复合薄膜电导率与拉伸强度

    Figure  7.  Conductivity and tensile strength of GR(CNTs)-CE/FKcomposite films

    图  8  5%CNTs (a)、25%CNTs (b)、5%GR (c)、25%GR (d)、10%GR+1%CNTs (e)和10%GR+5%CNTs (f)薄膜的断面SEM图像

    Figure  8.  SEM sectional images of 5%CNTs (a), 25%CNTs (b), 5%GR (c), 25%GR (d), 10%GR+1%CNTs (e) and 10%GR+5%CNTs (f) films

    图  9  (10%GR+2%CNTs)-CE/FK薄膜的手指弯曲不同角度(a)和手腕、手肘弯曲和脚踏(b)的电阻变化率以及拉伸电阻稳定性(c)

    Figure  9.  Change of (10%GR+2%CNTs)-CE/FK film resistance at different angles of finger bending (a) and when wrist, elbow bending and foot (b) and tensile resistance stability (c)

  • [1] SHAGHALEH H, XU X, WANG S F. Current progress in production of biopolymeric materials based on cellulose, cellulose nanofibers, and cellulose derivatives[J]. RSC Advances, 2018, 8(2): 825-842. doi: 10.1039/C7RA11157F
    [2] CALVINO C, MACKE N, KATO R, et al. Development, processing and applications of bio-sourced cellulose nanocrystal composites[J]. Progress in Polymer Science, 2020, 103: 101221. doi: 10.1016/j.progpolymsci.2020.101221
    [3] BODACHIVSKYI I, PAGE C J, KUZHIUMPARAMBIL U, et al. Dissolution of cellulose: Are ionic liquids innocent or noninnocent solvents?[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(27): 10142-10150.
    [4] YANG Y J, GANBAT D, ARAMWIT P, et al. Processing keratin from camel hair and cashmere with ionic liquids[J]. Express Polymer Letters, 2019, 13(2): 97-108. doi: 10.3144/expresspolymlett.2019.10
    [5] BHAVSAR P, ZOCCOLA M, PATRUCCO A, et al. Comparative study on the effects of superheated water and high temperature alkaline hydrolysis on wool keratin[J]. Textile Research Journal, 2017, 87(14): 1696-1705. doi: 10.1177/0040517516658512
    [6] YUSUF I, GARBA L, SHEHU M A, et al. Selective biodegradation of recalcitrant black chicken feathers by a newly isolated thermotolerant bacterium Pseudochrobactrum sp. IY-BUK1 for enhanced production of keratinase and protein-rich hydrolysates[J]. International Microbiology, 2020, 23(2): 189-200. doi: 10.1007/s10123-019-00090-4
    [7] 潘凤娇, 周乐, 曾少娟, 等. 离子液体/羊毛纤维/凝固剂三元相图的构建[J]. 过程工程学报, 2021, 21(2):160-166.

    PAN Fengjiao, ZHOU Le, ZENG Shaojuan, et al. The construction of phase diagram for ionic liquid/wool fiber/coagulator ternary systems[J]. The Chinese Journal of Process Engineering, 2021, 21(2): 160-166.
    [8] SOHEILMOGHADDAM M, PASBAKHSH P, WAHIT M U, et al. Regenerated cellulose nanocomposites reinforced with exfoliated graphite nanosheets using BMIMCL ionic liquid[J]. Polymer, 2014, 55(14): 3130-3138. doi: 10.1016/j.polymer.2014.05.021
    [9] RAHATEKAR S S, RASHEED A, JAIN R, et al. Solution spinning of cellulose carbon nanotube composites using room temperature ionic liquids[J]. Polymer, 2009, 50(19): 4577-4583. doi: 10.1016/j.polymer.2009.07.015
    [10] LIU Y R, WANG Y L, NIE Y, et al. Preparation of MWCNTs-graphene-cellulose fiber with ionic liquids[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(24): 20013-20021.
    [11] YANG X Y. Keratin-Based Biocomposites Reinforced and Cross-Linked with Dual-Functional Cellulose Nanocrystals[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(7): 5669-5678.
    [12] 侯高远, 李冠辉, 胡招湘, 等. 高雾度透明纤维素薄膜制备、性能及其太阳能电池应用[J]. 复合材料学报, 2022, 39(5): 1907-1923. doi: 10.13801/j.cnki.fhclxb.20210609.002

    HOU Gaoyuan, LI Guanhui, HU Zhaoxiang, et al. Preparation, properties and application of highly hazy and transparent cellulose films for solar cells[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 1907-1923 (in Chinese). doi: 10.13801/j.cnki.fhclxb.20210609.002
    [13] 焦晓岚, 邓鑫, 郑玲, 等. 可拉伸明胶基导电水凝胶的制备及传感应用[J]. 精细化工, 2023, 40(11): 2413-2420.

    JIAO Xiaolan, DENG Xin, ZHENG Ling, et al. Preparation and sensing application of stretchable gelatin-based conductive hydrogel[J]. Fine Chemicals, 2023, 40(11): 2413-2420 (in Chinese).
    [14] 冯计民. 红外光谱在微量物证分析中的应用[M]. 2版. 北京: 化学工业出版社, 2019: 84.

    FENG Jimin. The application of infrared spectroscopy in the analysis of trace material evidence[M]. 2nd ed. Beijing: Chemical Industry Press, 2019: 84(in Chinese).
    [15] JIANG Z M, CHEN D N, YU Y Q, et al. Composite fibers prepared from multi-walled carbon nanotubes/cellulose dispersed/dissolved in ammonium/dimethyl sulfoxide mixed solvent[J]. RSC Advances, 2017, 7(4): 2186-2192. doi: 10.1039/C6RA25318K
    [16] ZHAN Y, XIONG C X, YANG J W, et al. Flexible cellulose nanofibril/pristine graphene nanocomposite films with high electrical conductivity[J]. Composites Part A: Applied Science & Manufacturing, 2019, 119: 119-126.
    [17] SONG H J, CAI K F, WANG J, et al. Influence of polymerization method on the thermoelectric properties of multi-walled carbon nanotubes/polypyrrole composites[J]. Synthetic Metals, 2016, 211: 58-65. doi: 10.1016/j.synthmet.2015.11.013
    [18] 王淑花. 羊毛角蛋白改性纤维素膜的结构和性能[J]. 毛纺科技, 2021, 49(3): 6-10.

    WANG Shuhua. Structural and properties of wool keratin modified cellulose membrane[J]. Wool Textile Journal, 2021, 49(3): 6-10(in Chinese).
    [19] 金二锁, 杨芳, 朱阳阳, 等. 碱处理后纤维素纳米晶体的XRD、FT-IR和XPS分析[J]. 纤维素科学与技术, 2016, 24(3): 1-6.

    JIN Ersuo, YANG Fang, ZHU Yangyang, et al. Surface characterizations of mercerized cellulose nanocrystals by XRD, FT-IR and XPS[J]. Journal of Cellulose Science and Technology, 2016, 24(3): 1-6(in Chinese).
    [20] 闫守成, 张艳山, 徐倩倩, 等. 石墨烯复合载体催化剂在柴油车尾气NO脱除中的应用[J]. 化工进展, 2024, (3): 1456-1465

    YAN Shoucheng, ZHANG Yanshan, XU Qianqian, et al. Application of graphene composite supported catalyst in the removalof NO from diesel exhaust[J]. Chemical Industry and Engineering Progress, 2024, (3):1456-1465
    [21] JANG C R, JI J M, YU J H. Applicability of CNT as support candidate for thiophene hydrodesulfurization and 1-octene hydrogenation catalyst[J]. Inorganic Chemistry Communications, 2021, 129: 108615. doi: 10.1016/j.inoche.2021.108615
    [22] HUANG H D, LIU C Y, ZHANG L Q, et al. Simultaneous reinforcement and toughening of carbon nanotube/cellulose conductive nanocomposite films by interfacial hydrogen bonding[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(2): 317-324. doi: 10.1021/sc500681v
    [23] ZHENG Q F, CAI Z Y, MA Z Q, et al. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors[J]. ACS Applied Materials & Interfaces, 2015, 7(5): 3263-3271.
    [24] LUONG N D, PAHIMANOLIS N, HIPPI U, et al. Graphene/cellulose nanocomposite paper with high electrical and mechanical performances[J]. Journal of Materials Chemistry, 2011, 21(36): 13991-13998. doi: 10.1039/c1jm12134k
    [25] MIYASHIRO D, HAMANO R, UMEMURA K. A review of applications using mixed materials of cellulose, nanocellulose and carbon nanotubes[J]. Nanomaterials, 2020, 10(2): 186. doi: 10.3390/nano10020186
  • 加载中
图(9)
计量
  • 文章访问数:  214
  • HTML全文浏览量:  176
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-19
  • 修回日期:  2023-09-08
  • 录用日期:  2023-09-12
  • 网络出版日期:  2023-09-27
  • 刊出日期:  2024-06-15

目录

    /

    返回文章
    返回