留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

橡胶颗粒和稻壳灰复掺改性ECC拉压性能与裂缝特征

滕晓丹 黎永鸿 韦宵宁 周俊杰

滕晓丹, 黎永鸿, 韦宵宁, 等. 橡胶颗粒和稻壳灰复掺改性ECC拉压性能与裂缝特征[J]. 复合材料学报, 2024, 41(7): 3717-3726.
引用本文: 滕晓丹, 黎永鸿, 韦宵宁, 等. 橡胶颗粒和稻壳灰复掺改性ECC拉压性能与裂缝特征[J]. 复合材料学报, 2024, 41(7): 3717-3726.
TENG Xiaodan, LI Yonghong, WEI Xiaoning, et al. Tensile and compressive properties and crack characteristics of rice husk ash and crumb rubber particles modified engineered cementitious composites[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3717-3726.
Citation: TENG Xiaodan, LI Yonghong, WEI Xiaoning, et al. Tensile and compressive properties and crack characteristics of rice husk ash and crumb rubber particles modified engineered cementitious composites[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3717-3726.

橡胶颗粒和稻壳灰复掺改性ECC拉压性能与裂缝特征

基金项目: 国家自然科学基金(11962001);广西自然科学基金项目(2022JJB160114)
详细信息
    通讯作者:

    滕晓丹,博士,讲师,硕士生导师,研究方向为高延性水泥基复合材料 E-mail: xdteng@gxu.edu.cn

  • 中图分类号: TU528.58

Tensile and compressive properties and crack characteristics of rice husk ash and crumb rubber particles modified engineered cementitious composites

Funds: National Natural Science Foundation of China (11962001); Guangxi Natural Science Foundation Project (2022JJB160114)
  • 摘要: 采用稻壳灰为主要胶凝材料并掺入橡胶颗粒作为人工缺陷,制备低碳环保型的高延性水泥基复合材料(Rice Husk Ash and Crumb Rubbers Engineered Cementitious Composites, CR-RHA/ECC)。通过宏观力学性能与微观实验,研究不同养护龄期下(7 d和28 d)橡胶掺入量(0, 10%, 20%, 30%)对CR-RHA/ECC延性和开裂特性的影响。结果表明:随着龄期的增长,CR-RHA/ECC的延性存在较大差异,CR替代10%河砂使CR-RHA/ECC的7 d龄期延性削弱了54%,而使CR-RHA/ECC的28d龄期增长了67%,随着龄期增长(28d龄期),CR替代30%河砂可使CR-RHA/ECC的延性达6%,此时CR-RHA/ECC相较于无CR替代河砂组CR-RHA/ECC的拉伸裂缝宽度减小了53%。

     

  • 图  1  颗粒微观形态

    Figure  1.  Microscopic morphology of particles

    图  2  粉煤灰、稻壳灰和普通硅酸盐水泥粒度曲线

    Figure  2.  Particle size distribution of fly ash、rice husk ash and OPC

    图  3  狗骨试件尺寸及测试图(单位:mm)

    Figure  3.  Dog bone specimen size and test diagram (Unit: mm)

    图  4  7 d和28 d CR-RHA/ECC抗压强度试验结果

    Figure  4.  Compressive strength test results of CR-RHA/ECC at 7 d and 28 d

    图  5  各组ECC 7 d 应力-应变曲线

    Figure  5.  Stress-strain curves of ECCs at 7 days

    图  6  各组ECC 28 d应力-应变曲线

    Figure  6.  Stress-strain curves of ECCs at 28 days

    图  7  7 d和28 d龄期延性变化归一化拟合曲线:(a) 7 d;(b) 28 d

    Figure  7.  Curves of ductility change at 7 and 28 days normalized: (a) 7 d; (b) 28 d

    图  8  PVA纤维单纤维拉拔曲线[26]

    Figure  8.  Single fiber pullout behavior for PVA[26]

    图  9  CR-RHA/ECC28 d多缝开裂图

    Figure  9.  Multi-cracking diagram

    图  10  CR对裂缝宽度影响的两种机理:(a) CR削弱基体;(b) CR桥接裂缝[21]

    Figure  10.  Two mechanisms for CR to reduce crack width: (a) CR weakened matrix; (b) CR bridges cracks[21]

    图  11  R60CR0和R60CR30 SEM结果

    Figure  11.  R60CR0 and R60CR30 SEM results

    图  12  28 d R60CR0 EDS结果

    Figure  12.  28 d R60CR0 EDS Results

    表  1  胶凝材料化学成分含量(wt%)

    Table  1.   Chemical composition of cementitious materials(wt%)

    SiO2 K2O CaO P2O5 Al2O3 MgO Fe2O3 SO3 Na2O
    RHA 85.90 3.43 1.11 0.75 0.55 0.46 0.37 0.19 0.11
    FA 50.80 1.44 2.29 0.38 31.95 0.62 3.34 0.67 0.54
    OPC 22.00 0.56 62.20 0.12 6.02 0.85 4.23 3.16 0.17
    Notes: RHA, FA and OPC stand for rice husk ash, fly ash and ordinary Portland cement.
    下载: 导出CSV

    表  2  CR-RHA/ECC配合比方案(wt%)

    Table  2.   Mix design of CR-RHA/ECC (wt%)

    MixturesOPCFARHARiver sandCRWaterHRWRA
    /wt%
    PVA
    /vol%
    R60CR01.000.880.761.1500.807.002.00
    R60CR101.000.880.761.040.030.807.002.00
    R60CR201.000.880.760.920.050.807.002.00
    R60CR301.000.880.760.810.080.807.002.00
    R0 CR01.002.200.001.150.000.802.002.00
    Notes: HRWRA is the liquid superplasticizer. OPC, FA and RHA stand for ordinary portland cement, fly ash and rice husk ash. R represent RHA, CR represent crumbs rubber; In RiCRj, i represents the volume fraction of rice husk ash to FA; j represents the volume ratio of crumb rubber to river sand.
    下载: 导出CSV

    表  3  开裂与极限应力及其比值

    Table  3.   Cracking and ultimate strength and their ratio

    Mixture Cracking strength $ {\sigma }_{\mathrm{s}\mathrm{s}} $ Ultimate strength $ {\sigma }_{\mathrm{c}} $ $ {\sigma }_{\mathrm{c}}/{\sigma }_{\mathrm{s}\mathrm{s}} $
    7 d (MPa) 28 d(MPa) 7 d (MPa) 28 d(MPa) 7 d (MPa) 28 d(MPa)
    R60CR0 2.47 2.82 3.47 4.36 1.44 1.55
    R60CR10 2.49 2.61 2.51 4.33 1.09 1.66
    R60CR20 2.24 2.36 2.49 3.89 1.00 1.65
    R60CR30 2.23 2.52 2.45 4.11 1.17 1.63
    下载: 导出CSV

    表  4  28 d裂缝参数统计

    Table  4.   Statistical of crack parameters

    MixtureCrack numbersCrack width/μmMixtureCrack numbersCrack width/μm
    R60CR012197R60CR103796
    R60CR2047104R60CR304893
    下载: 导出CSV
  • [1] Li V C, Wang S X, Wu C. Tensile strain-hardening behavior or polyvinyl alcohol engineered cementitious composite (PVA-ECC)[J]. Aci Materials Journal, 2001, 98(6): 483-92.
    [2] 徐世烺, 蔡向荣, 张英华. 超高韧性水泥基复合材料单轴受压应力-应变全曲线试验测定与分析[J]. 土木工程学报, 2009, 42(11): 79-85. doi: 10.3321/j.issn:1000-131X.2009.11.011

    XU Shilang, CAI Xiangrong, ZHANG Yinghua. Determination and analysis of full stress-strain curves of ultra-high toughness cement-based composites under Uniaxial Compression[J]. Journal of Civil Engineering, 2009, 42(11): 79-85(in Chinese). doi: 10.3321/j.issn:1000-131X.2009.11.011
    [3] 高淑玲, 徐世烺. PVA纤维增强水泥基复合材料拉伸特性试验研究[J]. 大连理工大学学报, 2007, (02): 233-239. doi: 10.3321/j.issn:1000-8608.2007.02.016

    GAO Shuling, XU Shilang. Experimental study on tensile properties of PVA fiber reinforced cement-based composites[J]. Journal of Dalian University of Technology, 2007, (02): 233-239(in Chinese). doi: 10.3321/j.issn:1000-8608.2007.02.016
    [4] Yu J, Li H, Leung C K Y, et al. Matrix design for waterproof engineered cementitious composites (ECCs)[J]. Construction and Building Materials, 2017, 139: 438-446. doi: 10.1016/j.conbuildmat.2017.02.076
    [5] 杨珊, 彭林欣, 滕晓丹. 高温后PVA纤维增强水泥基复合材料力学性能试验研究[J]. 混凝土与水泥制品, 2021, (04): 49-54.

    YANG Shan, PENG Linxin, TENG Xia-dan. Experimental study on Mechanical properties of PVA fiber-reinforced cement-based composites at high temperature[J]. Concrete and Cement Products, 2021, (04): 49-54(in Chinese).
    [6] WANG J, XIAO J, ZHANG Z, et al. Action mechanism of rice husk ash and the effect on main performances of cement-based materials: a review[J]. Construction and Building Materials, 2021, (288): 123068.
    [7] 李丽华, 韩琦培, 杨星, 等. 稻壳灰-水泥固化淤泥土力学特性及微观机理研究[J/OL]. 土木工程学报: 1-12

    2023-03-29]. LI Lihua, HAN Qipei, YANG Xing, et al. Rice husk ash and cement solidification silt soil mechanics properties and microscopic mechanism research [J/OL]. Journal of civil engineering: 1-12 [2023-03-29] (in Chinese).
    [8] He, Z. H. , Li, L. , Du, S. Creep analysis of concrete containing rice husk ash[J]. Cement Concr. Compos. 2017, 80: 190–199.
    [9] Huang, H, Gao X, Wang H, et al. Influence of rice husk ash on strength and permeability of ultra-high performance concrete[J]. Construct. Build. Mater., 2017, 149: 621-628. doi: 10.1016/j.conbuildmat.2017.05.155
    [10] Zhang Z, Fan Y, Liu J C. Shuping Wang, Eco-friendly high strength, high ductility engineered cementitious composites (ECC) with substitution of fly ash by rice husk ash[J]. Cem. Concr. Res, 2020, 137: 106200. doi: 10.1016/j.cemconres.2020.106200
    [11] F. B. P. da Costa, D. P. Righi, A. G. Graeff, et al. Experimental study of some durability properties of ECC with a more environmentally sustainable rice husk ash and high tenacity polypropylene fibers[J]. Constr. Build. Mater., 2019, 213: 505-513. doi: 10.1016/j.conbuildmat.2019.04.092
    [12] Zhang Z, Yuvaraj A, Di J, et al. Matrix design of light weight, high strength, high ductility ECC[J]. Construction and Building Materials, 2019, 210: 188-197. doi: 10.1016/j.conbuildmat.2019.03.159
    [13] Abdulkadir I, Mohammed B S, Liew M S, et al. A review of the effect of waste tire rubber on the properties of ECC[J]. Intern. J. Adv. Appl. Sci, 2020, 7: 105-116.
    [14] Abdulkadir I, Mohammed B S, Liew M S, et al. A review of the effect of waste tire rubber on the properties of ECC[J]. Intern. J. Adv. Appl. Sci, 2020, 7: 105-116.
    [15] Zhang Z, Ma H, Qian S. Investigation on properties of ECC incorporating crumb rubber of different sizes[J]. Journal of Advanced Concrete Technology, 2015, 13(5): 241-251. doi: 10.3151/jact.13.241
    [16] 陈爱玖, 王静, 马莹. 钢纤维橡胶再生混凝土的抗冻性试验[J]. 复合材料学报, 2015, 32(4): 933-941.

    CHEN Aijiu, WANG Jing, MA Ying. Rubber steel fiber recycled concrete frost resistance test[J]. Journal of composite materials, 2015, 32(4): 933-941(in Chinese).
    [17] Ismail MK, Sherir MA, Siad H, et al. Properties of self-consolidating engineered cementitious composite modified with rubber[J]. Journal of Materials in Civil Engineering, 2018, 30(4): 04018031. doi: 10.1061/(ASCE)MT.1943-5533.0002219
    [18] Zhang Z, Yuvaraj A, Di J, et al. Matrix design of light weight, high strength, high ductility ECC[J]. Construction and Building Materials, 2019, 210: 188-197. doi: 10.1016/j.conbuildmat.2019.03.159
    [19] Ma H, Qian S, Zhang Z, et al. Tailoring engineered cementitious composites with local ingredients[J]. Construction and Building Materials, 2015, 101: 584-595. doi: 10.1016/j.conbuildmat.2015.10.146
    [20] S. Ramanathan, H. Moon, M. Croly, et al. Suraneni, Predicting the degree of reaction of supplementary cementitious materials in cementitious pastes using a pozzolanic test[J]. Constr. Build. Mater. , 2019, 204: 621–630.
    [21] M. Hou, D. Zhang, V. C. Li. Crack Width Control and Mechanical Properties of Low 681 Carbon Engineered Cementitious Composites (ECC)[J]. Constr. Build. Mater. , 2022: 348.
    [22] P. Suraneni, J. Weiss. Examining the pozzolanicity of supplementary cementitious materials using isothermal calorimetry and thermogravimetric analysis[J]. Cem. Concr. Compos., 2017, 83: 273-278. doi: 10.1016/j.cemconcomp.2017.07.009
    [23] P. T. Durdziński, M. B. Haha, S. A. Bernal, et al. , Outcomes of the RILEM round robin on degree of reaction of slag and fly ash in blended cements[J]. Mater. Struct. , 2017, 50 (2): 135.
    [24] Wang J, Guo Z, Yuan Q, et al. Effects of ages on the ITZ microstructure of crumb rubber concrete[J]. Construction and Building Materials, 2020, 254: 119329. doi: 10.1016/j.conbuildmat.2020.119329
    [25] Ma H, Qian S, Zhang Z, et al. Tailoring engineered cementitious composites with local ingredients[J]. Construction and building materials, 2015, 101: 584-595. doi: 10.1016/j.conbuildmat.2015.10.146
    [26] Yang E H, Wang S, Yang Y, et al. Fiber-bridging constitutive law of engineered cementitious composites[J]. Journal of advanced concrete technology, 2008, 6(1): 181-193. doi: 10.3151/jact.6.181
    [27] 滕晓丹, 郭健鸣, 孙辉煌. 基于深度学习的高延性水泥基复合材料单轴拉伸裂缝检查与特征定量化识别[J/OL]. 硅酸盐学报: 1-10

    2023-03-29]. TENG Xiaodan, GUO Jianming, SUN Huihuang. Deep learning based uniaxial tensile crack inspection and feature quantification identification of high ductility cement-based composites [J/OL]. Journal of silicate: 1-10. [2023-03-29] (in Chinese).
    [28] 阚黎黎, 朱嘉伦, 王飞等. 聚乙烯纤维增强赤泥-碱矿渣复合材料的力学性能[J]. 复合材料学报, 2022, 33(11): 5367-5374.

    KAN Lili, ZHU Jialun, WANG Fei, et al. Polyethylene fiber reinforced mechanical properties of red mud - alkali slag composites[J]. Journal of composite materials, 2022, 33(11): 5367-5374(in Chinese).
    [29] Redon C, Li V C, Wu C, et al. Measuring and modifying interface properties of PVA fibers in ECC matrix[J]. Journal of materials in civil engineering, 2001, 13(6): 399-406. doi: 10.1061/(ASCE)0899-1561(2001)13:6(399)
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  177
  • HTML全文浏览量:  126
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-11
  • 修回日期:  2023-10-13
  • 录用日期:  2023-10-24
  • 网络出版日期:  2023-11-14
  • 刊出日期:  2024-07-15

目录

    /

    返回文章
    返回