留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

陶瓷防弹板在多发打击下的损伤累积模拟与残余性能评估

何成龙 霍子怡 刘亚青 杨可谞 毛翔

何成龙, 霍子怡, 刘亚青, 等. 陶瓷防弹板在多发打击下的损伤累积模拟与残余性能评估[J]. 复合材料学报, 2024, 41(6): 3221-3231.
引用本文: 何成龙, 霍子怡, 刘亚青, 等. 陶瓷防弹板在多发打击下的损伤累积模拟与残余性能评估[J]. 复合材料学报, 2024, 41(6): 3221-3231.
HE Chenglong, HUO Ziyi, LIU Yaqing, et al. Damage accumulation simulation and residual performance evaluation of ceramic ballistic plate under the multi-hit strikes[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3221-3231.
Citation: HE Chenglong, HUO Ziyi, LIU Yaqing, et al. Damage accumulation simulation and residual performance evaluation of ceramic ballistic plate under the multi-hit strikes[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3221-3231.

陶瓷防弹板在多发打击下的损伤累积模拟与残余性能评估

基金项目: 中北大学纳米功能复合材料山西省重点实验室开放课题研究基金(NFCM202101);山西省基础研究计划资助项目(20210302124197);博士后科学基金(2021 M702981)
详细信息
    通讯作者:

    何成龙,博士,副教授,研究方向为冲击动力学 E-mail: hechenglong@nuc.edu.cn

  • 中图分类号: TB332

Damage accumulation simulation and residual performance evaluation of ceramic ballistic plate under the multi-hit strikes

Funds: The Opening Project of Shanxi Province Key Laboratory of Functional Nanocomposites, North University of China (NFCM202101); Fundamental Research Program of Shanxi province(20210302124197); The China Postdoctoral Science Foundation (2021 M702981)
  • 摘要: 陶瓷/纤维材料复合防弹板广泛应用于单兵防护装备,研究其抗多发冲击性能对于减少士兵伤亡有重要意义。基于53式7.62 mm穿燃弹冲击 SiC/UHMWPE 防弹板工况,利用数值模拟方法对多次冲击下防弹板的破坏分布和残余抗弹性能进行分析。利用陶瓷、纤维破坏及粘结面剥离程度表征整板损伤,并建立不同损伤区域下防弹板残余性能的分布规律。结果表明:第一次冲击下,防弹板损伤半径(R)为30 mm,当R<15 mm时,损伤(D)大于0.6,靶板无法抵御第二发子弹冲击;两次冲击下,两发子弹间距(ΔL)小于50 mm时,中间破坏区损伤有明显累加现象,当ΔL>50 mm时,损伤累加效应不显著。将防弹板以5 mm×5 mm网格离散,得到不同损伤面积占比,得出在两次冲击下整板穿透概率为0.94%。三次冲击下的整板穿透概率与第二次冲击位置有关,且当ΔL=20 mm时,三次冲击下整板穿透概率达到1.94%。

     

  • 图  1  SiC/UHMWPE板仿真模型示意图

    Figure  1.  Simulation model diagram of SiC/UHMWPE plate

    图  2  几何间隔法示意图

    Figure  2.  Geometric interval method diagram

    ΔH-Distance between the two bullets vertical to the plate; ΔL-Distance between the impact points of the two bullets

    图  3  SiC/UHMWPE板迎弹面破坏形态对比

    Figure  3.  Comparison of damage patterns on the impact surface of SiC/UHMWPE plate

    图  4  SiC/UHMWPE板背面破坏形态对比

    Figure  4.  Comparison of damage forms on the back of SiC/UHMWPE plate

    图  5  单发冲击下SiC/UHMWPE板内应力传播及破坏分布

    Figure  5.  Stress propagation and damage distribution in SiC/UHMWPE plate under single bullet impact

    图  6  单发冲击SiC/UHMWPE板下相对破坏深度-子弹动能关系曲线

    Figure  6.  Relationship between kinetic energy of bullet and the broken depth under single bullet impact SiC/UHMWPE plate

    图  7  SiC/UHMWPE板内两发7.62 mm穿燃弹ΔL为35 mm的裂纹分布状况及应力场分布变化

    Figure  7.  Crack distribution and stress field distribution of two 7.62 mm armor-piercing projectile in SiC/UHMWPE plate ΔL is 35 mm

    图  8  侵彻SiC/UHMWPE板过程中破坏深度-子弹动能关系曲线

    Figure  8.  Damage depth-bullet kinetic energy relationship curve of SiC/UHMWPE plate penetrated

    图  9  侵彻SiC/UHMWPE板过程中破坏深度-Eg曲线

    Figure  9.  Relationship between the gap of kinetic energy Eg and the broken depth of SiC/UHMWPE plate penetrated

    图  10  SiC/UHMWPE板内不同间距二次冲击下的破坏形态

    Figure  10.  Damage modes of SiC/UHMWPE plate under two impact with different spacing

    图  11  SiC/UHMWPE板材料破坏定义示意图

    Figure  11.  Definition of material damage of SiC/UHMWPE plate

    图  12  侵彻陶瓷板过程中动能-材料相对破碎深度关系

    Figure  12.  Relationship between kinetic energy of ceramic plate and layer and material relative crushing depth during penetration process

    图  13  侵彻UHMWPE过程中动能-材料相对破碎深度关系

    Figure  13.  Relationship between kinetic energy of and UHMWPE and material relative crushing depth during penetration process

    图  14  SiC/UHMWPE板投影损伤程度分布图

    Figure  14.  Damage distribution map of SiC/UHMWPE plate projection

    图  15  第一发冲击下SiC/UHMWPE板损伤区域面积示意图

    Figure  15.  Diagram of damage area of SiC/UHMWPE plate under the first impact

    表  1  7.62 mm子弹材料参数[14]

    Table  1.   Material constitutive parameters for type 7.62 mm bullet[14]

    Parameterρ/(g·cm−3)G/GPaA/GPaB/GPanC$\dot \varepsilon _0^{}{\text{ /} }{ {\text{s} }^{ {{ - 1} } } }$m
    Steel7.85206190011000.0650.051.01.0
    Copper8.96124902920.310.0251.01.09
    Parametert0/Ktm/KD1D2D3D4D5
    Steel30018000.2
    Copper30013560.544.89-3.030.0141.12
    Notes: ρ−Density; G−Shear modulus; A−Static yield strength; B−Strain hardening coefficient; n−Strain hardening exponent; C−Strain rate coefficient; ${\varepsilon }_{0}^{\dot{} }\text{ }$−Reference Strain rate; m−Thermal softening exponent; t0−Reference temperature; tm−Melting temperature; D−Damage constant.
    下载: 导出CSV

    表  2  UHMWPE纤维材料参数[18]

    Table  2.   Material parameters of UHMWPE fiber laminates[18]

    ParameterE1/GPaE2=E3/GPaν12=ν31ν23G12/GPaG13/GPaG23/GPa
    UHMWPE15311.30.30.4663.6
    ParameterXc/MPaXt/MPaYc/MPaYt/MPaZc/MPaZt/MPa
    UHMWPE2537158025371580340180
    Notes:E1, E2, E3−Elastic modulus in x, y and z directions, respectively; v12, v13, v23−Poisson's ratios; G12, G23, G13−Shear modulus; XC, XT, YC, YT, ZC, ZT−Compressive and tensile strengths in x, y, z directions.
    下载: 导出CSV

    表  3  SiC陶瓷材料参数[19]

    Table  3.   SiC ceramic material parameters[19]

    Parameterρ/(g·cm−3)G/GPaABCMNT/GPa
    SiC3.1251930.960.350.0091.00.650.75
    ParameterPHEL/GPaD1D2βK1/GPaK2/GPaK3/GPa
    SiC5.130.480.481.02203610
    Notes:ρ−Density; G−Shear modulus; A−Intact strength coefficient; B−Fracture strength coefficient; C−Strain rate coefficient; M−Fracture strength exponent; N−Intact strength exponent; T−Maximum tensile pressure strength; PHEL−Pressure at HEL; D1−Damage coefficient; D2−Damage coefficient; K1−Bulk modulus; K2−Pressure coefficient.
    下载: 导出CSV

    表  4  Cohesive 单元材料参数[21]

    Table  4.   Material parameters of Cohesive elements[21]

    ParameterNumeric value
    K/(MPa·mm−1)106
    N/MPa30
    S/MPa80
    T/MPa80
    GI/(kJ·mm−2 )0.31
    GI/(kJ·mm−2 )0.63
    GIII/(kJ·mm−2 )0.63
    Notes:K−Initial stiffness; N, S, T−Corresponding normal and shear strengths; GI, GII and GIII−Critical energy release rates of Model I, II and III.
    下载: 导出CSV

    表  5  子弹冲击SiC/UHMWPE实验结果与数值模拟结果比对

    Table  5.   Comparison between experimental results of bullet impact SiC/UHMWPE with numerical simulation results

    Bullet velocity
    /(m·s-1)
    Depth of penetration/mmDorsal convex height/mmMean to diameter
    /mm
    Citations8086.71.525.5
    Numerical simulation80871.623.67
    下载: 导出CSV

    表  6  第二发子弹穿透SiC/UHMWPE板概率

    Table  6.   Probability of the second bullet penetrate the SiC/UHMWPE plate

    Penetration conditions Probability/%
    Ps2 3.77
    Pp2 25.00
    P02 0.94
    Notes:Ps3−Probability that the second bullet will hit the damaged area; Pp3−Probability of a second bullet penetrating the damaged area; P03−Probability of the second bullet penetrating.
    下载: 导出CSV

    表  7  第三发子弹穿透SiC/UHMWPE板概率

    Table  7.   Probability of the third bullet penetrate the SiC/UHMWPE plate

    Penetration
    conditions
    ΔL/mm
    1520355080
    Ps35.92%7.40%7.42%8.9%9.2%
    Pp326.07%26.24%25.53%21.18%20.49%
    P031.54%1.94%1.89%1.89%1.89%
    Notes:Ps3−Probability of the third bullet hitting the damage area of the second bullet; Pp3−Probability of the third bullet penetrating the damage area of the second bullet; P03−Probability of penetration of the third bullet.
    下载: 导出CSV
  • [1] 程时雨, 李忠盛, 郭峰, 等. 碳化硼陶瓷插板抗多发弹性能研究[J]. 兵器装备工程学报, 2022, 43(8): 146-151.

    CHEN Shiyu, LI Zhongsheng, GUO Feng, et al. Study on multiple elastic resistance of boron carbide ceramic insert[J]. Journal of Ordnance Equipment Engineering, 2022, 43(8): 146-151(in Chinese).
    [2] 贾楠, 焦亚男, 周庆, 等. 碳化硼陶瓷/超高分子量聚乙烯复合装甲板抗12.7 mm穿甲弹侵彻过程中陶瓷的碎裂行为[J]. 复合材料学报, 2023, 40(6): 3571-3582.

    JIA Nan, JIAO Yanan, ZHOU Qing, et al. Ceramic fragmentation behavior of B4C ceramic/ultra-high molecular weight polyethylene composite armor plate impacted by 12.7 mm armor piercing projectile[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3571-3582(in Chinese).
    [3] 陈智勇, 徐颖强, 李妙玲, 等. 陶瓷复合装甲优化设计及弹击后剩余弯曲强度[J]. 复合材料学报, 2023, 40(1): 577-589.

    CHEN Zhiyong, XU Yingqiang, LI Miaoling, et al. Optimum design of ceramic composite armor and residual bending strength after projectile impact[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 577-589(in Chinese).
    [4] 王晓宏, 张丰发, 刘长喜, 等. 陶瓷/纤维层间混杂复合材料设计制作及抗弹体冲击性能测试[J]. 复合材料学报, 2021, 38(8): 2684-2693.

    WANG Xiaohong, ZHANG Fengfa, LIU Changxi, et al. Design and fabrication of ceramic/fiber interlayer hybrid composites and test of projectile impact resistance[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2684-2693(in Chinese).
    [5] 肖文莹, 崔进, 王璐. B4C陶瓷/UHMWPE复合材料防护性能数值模拟分析[J]. 兵器材料科学与工程, 2021, 44(5): 103-110.

    XIAO Wenying, CUI Jin, WANG Lu. Simulation and analysis of protective performance of B4C/UHMWPE composite[J]. Ordnance Material Science and Engineering, 2021, 44(5): 103-110(in Chinese).
    [6] 王长利, 周刚, 马坤, 等. 爆炸成型弹丸对陶瓷材料的侵彻实验研究[J]. 兵器材料科学与工程, 2017, 40(3): 94-98.

    WANG Changli, ZHOU Gang, MA Kun, et al. Experimental study of EFP penetrating ceramic armor[J]. Ordnance Material Science and Engineering, 2017, 40(3): 94-98(in Chinese).
    [7] 贾楠, 焦亚男, 周庆, 等. 碳化硅-超高分子量聚乙烯纤维增强树脂基复合材料复合装甲板的抗穿甲弹侵彻性能及其损伤机制[J]. 复合材料学报, 2022, 39(10): 4908-4917.

    JIA Nan, JIAO Yanan, ZHOU Qing, et al. Anti-penetration performance of SiC-ultra-high molecular weight polyethylene fiber reinforced resin matrix composite armor plate against armor piercing projectile and its damage mechanism[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4908-4917(in Chinese).
    [8] DRESCH A B, VENTURINI J, ARCARO S, et al. Ballistic ceramics and analysis of their mechanical properties for armour applications: A review[J]. Ceramics International, 2021, 47(7): 8743-8761.
    [9] 韩永要, 赵国志, 杜忠华. 长管体斜侵彻有限厚均质靶板简化模型[J]. 力学与实践, 2007, 29(1): 53-57. doi: 10.1136/inpract.29.1.53

    HAN Yongyao, ZHAO Guozhi, DU Zhonghua. A simplified model for long tubular penetration into oblique finite homogeneous target[J]. Mechanics in Engineering, 2007, 29(1): 53-57(in Chinese). doi: 10.1136/inpract.29.1.53
    [10] YU Y, WANG W Q, CHEN K G, et al. Controllable fracture in shocked ceramics: Shielding one region from severely fractured state with the sacrifice of another region[J]. International Journal of Solids and Structures, 2018, 135:137-147.
    [11] MIRKHALAF M, SUNESARA A, ASHRAFI B, et al. Toughness by segmentation: Fabrication, testing and micromechanics of architectured ceramic panels for impact applications[J]. International Journal of Solids and Structures, 2019, 158:52-65.
    [12] LAHIRI S K, SHAW A, RAMACHANDRA L S. On performance of different material models in predicting response of ceramics under high velocity impact[J]. International Journal of Solids and Structures, 2019, 176-177:96-107.
    [13] SHEN Z W, HU D A, YANG G, et al. Ballistic reliability study on SiC/UHMWPE composite armor against armor-piercing bullet[J]. Composite Structures, 2019, 213:209-219.
    [14] 杨姝, 于晨, 康玉彪, 等. N形装甲板抗穿甲弹侵彻性能数值模拟[J]. 振动与冲击, 2021, 40(16): 1-9.

    YANG Shu, YU Cheng, KANG Yubiao, et al. Numerical simulation of anti-penetration performance of an N-shaped armor plate against armor-piercing projectiles[J]. Journal of Vibration and Shock, 2021, 40(16): 1-9 (in Chinese).
    [15] HOLMQUIST T J, JOHNSON G R. Response of boron carbide subjected to high-velocity impact[J]. International Journal of Impact Engineering, 2008, 35(8): 742-752. doi: 10.1016/j.ijimpeng.2007.08.003
    [16] JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials[J]. AIP Conference Proceedings, 1994, 309(1): 981-984.
    [17] JOHNSON G R, HOLMQUIST T J, BEISSEL S R. Response of aluminum nitride (including a phase change) to large strains, high strain rates, and high pressures[J]. Journal of Applied Physics, 2003, 94(3): 1639-1646. doi: 10.1063/1.1589177
    [18] DUCHET J, LEGRAS R, DEMOUSTIER-CHAMPAGNE S. Chemical synthesis of polypyrrole: Structure-properties relationship[J]. Synthetic Metals, 1998, 98(2): 113-122. doi: 10.1016/S0379-6779(98)00180-5
    [19] LAHIRI S K, SHAW A, RAMACHANDRA L S. On performance of different material models in predicting response of ceramics under high velocity impact[J]. International Journal of Solids and Structures, 2019, 176-177: 96-107.
    [20] 罗小豪, 温垚珂, 闫文敏, 等. 基于ABAQUS二次开发的球形破片侵彻UHMWPE软质防弹衣数值模拟[J]. 复合材料学报, 2021, 38(10): 3373-3386.

    LUO Xiaohao, WEN Yaoke, YAN Wenming, et al. Numerical simulation of spherical fragment penetrating UHMWPE soft body armor based on ABAQUS[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3373-3386(in Chinese).
    [21] HAN Q G, LI H M, CHEN X H, et al. Impact resistant basalt fiber-reinforced aluminum laminate with Janus helical structures inspired by lobster and mantis shrimp [J], Composite Structures, 291 (2022), 115551.
    [22] 公共安全行业标准[S]. 警用防弹衣通用技术条件标准 GA 141-2001.

    Public safety industry standard [S]. General technical conditions for police body armour GA 141-2001(in Chinese).
    [23] 孔晓鹏. 陶瓷复合装甲脱粘机理和抗多发打击研究[D]. 长沙: 国防科学技术大学, 2010: 55-57.

    KONG Xiaopeng. Study on the debonding mechanism and the protection capability of ceramic composite armors against multi-hit [D]. Changsha: National University of Defense Technology, 2010: 55-57(in Chinese).
    [24] 黄浩杰, 梁森, 周越松. 陶瓷/UHMWPE异形复合材料靶板抗侵彻性能研究[J]. 复合材料科学与工程, 2022, (11): 49-53, 62.

    HUANG Haojie, LIANG Sheng, ZHOU Yuesong. Study on penetration resistance of ceramic/UHMWPE composite target plates with different shapes[J]. Acta Materiae Compositae Sinica, 2022, (11): 49-53, 62(in Chinese).
    [25] 江怡, 黄健, 陈威, 等. 防弹复合结构抗侵彻性能分析[J]. 计算机仿真, 2019, 36(12): 10-14, 30.

    JIANG Yi, HUANG Jian, CHEN Wei, et al. Research on the ballistic performance of the bullet-proof composite structures[J]. Computer Simulation, 2019, 36(12): 10-14, 30(in Chinese).
  • 加载中
图(15) / 表(7)
计量
  • 文章访问数:  200
  • HTML全文浏览量:  130
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-08
  • 修回日期:  2023-10-26
  • 录用日期:  2023-11-09
  • 网络出版日期:  2023-11-27
  • 刊出日期:  2024-06-15

目录

    /

    返回文章
    返回