留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温度对金属-复合材料混合多螺栓连接力学性能的影响

王东 董传瑞 朱红民 丁国元 黄河源 赵美英

王东, 董传瑞, 朱红民, 等. 温度对金属-复合材料混合多螺栓连接力学性能的影响[J]. 复合材料学报, 2024, 41(6): 3241-3250.
引用本文: 王东, 董传瑞, 朱红民, 等. 温度对金属-复合材料混合多螺栓连接力学性能的影响[J]. 复合材料学报, 2024, 41(6): 3241-3250.
WANG Dong, DONG Chuanrui, ZHU Hongmin, et al. Effect of temperature on mechanical properties of metal-compositehybrid multi-bolt joint[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3241-3250.
Citation: WANG Dong, DONG Chuanrui, ZHU Hongmin, et al. Effect of temperature on mechanical properties of metal-compositehybrid multi-bolt joint[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3241-3250.

温度对金属-复合材料混合多螺栓连接力学性能的影响

基金项目: 强度与结构完整性全国重点实验室开放基金(ASSIKFJJ202305005)
详细信息
    通讯作者:

    黄河源,博士,副研究员,硕士生导师,研究方向为飞行器结构设计 E-mail: huangheyuan@nwpu.edu.cn

  • 中图分类号: V214.8

Effect of temperature on mechanical properties of metal-compositehybrid multi-bolt joint

Funds: National Key Laboratory of Strength and Structural Integrity Open Fund (ASSIKFJJ202305005)
  • 摘要: 以铝合金-碳纤维/双马来酰亚胺(BMI)树脂复合材料多螺栓双搭接结构为研究对象,结合数字图像相关(DIC)技术开展了不同温度环境下(−100℃、25℃、150℃)的准静态拉伸试验,并采用金属弹塑性模型和复合材料渐进损伤模型进行数值模拟分析,同时开发考虑温度影响的UMAT子程序预测复合材料损伤,研究了温度对金属-复合材料混合多螺栓连接结构承载能力、破坏模式、损伤演化和钉载分配的影响规律。结果表明:相比25℃室温环境,150℃和−100℃环境下结构的极限载荷分别降低4.46%和2.06%;不同温度环境下的破坏模式均为复合材料孔边拉伸断裂,同时高温环境下孔边分层与挤压现象更为严重,而低温环境下纤维与基体结合紧密,孔边挤压与分层现象更弱;150℃环境下复合材料孔边损伤不均匀性相比常温环境有所减弱,而−100℃环境下不均匀性有所增强;由于热膨胀不匹配性,高温和低温环境下三组螺栓钉载分配规律也表现出明显差异。

     

  • 图  1  试验件形状及尺寸示意图

    Figure  1.  Schematic diagram of shape and size of test piece

    图  2  试验过程中的温度控制

    Figure  2.  Temperature control in the test process

    图  3  DIC测试设备

    Figure  3.  Digital image correlation test equipment

    图  4  金属与复合材料混合多螺栓连接有限元模型

    Figure  4.  Finite element model of metal-composite hybrid multi-bolt joint

    图  5  不同温度环境下2024 Al应力-应变曲线

    Figure  5.  Stress-strain curves of 2024 Al in different temperature environment

    图  6  碳纤维/BMI树脂复合材料搭接板宏观破坏模式

    Figure  6.  Macroscopic failure mode of carbon fiber/BMI resin composite laminates

    图  7  不同温度环境下碳纤维/BMI树脂复合材料搭接板破坏后的孔边SEM图像

    Figure  7.  SEM images of hole edges of carbon fiber/BMI resin composite laminates after failure at different temperature environments

    图  8  混合连接结构受载过程中的表面应变场分布

    Figure  8.  Distribution of surface strain field in the process of hybrid joint structure loading

    图  9  25℃环境下碳纤维/BMI树脂复合材料孔边损伤演化过程图

    Figure  9.  Damage evolution process diagram of carbon fiber/BMI resin composite material hole edge at 25℃

    图  10  不同温度环境下碳纤维/BMI树脂复合材料孔边纤维损伤演化过程图

    Figure  10.  Damage evolution process diagram of carbon fiber/BMI resin composite material hole edge at different temperature

    图  11  不同温度下混合多螺栓连接的钉载比例变化规律

    Figure  11.  Variation law of bolt-load distribution ratio of mixed multi-bolt joint structure at different temperature

    Bolt1/ Bolt 2/ Bolt 3 in Fig. 11 corresponds to Hole1/ Hole 2/ Hole 3 in Fig. 6, respectively

    表  1  碳纤维/BMI树脂基复合材料属性参数[14, 24]

    Table  1.   Attribute parameters of carbon fiber/BMI resin composite[14, 24]

    ${E_{11}}/{\text{MPa}} $ ${E}_{22}、{E}_{33}/\text{MPa} $ ${G}_{12}、{G}_{13}/\text{MPa} $ $ {G_{23}}/{\text{MPa}} $ $ {\nu }_{12}、{\nu }_{13} $ ${\nu _{23}} $
    150℃ 123000 9106 5250 3133 0.33 0.42
    25℃ 125000 9370 5450 3373 0.3 0.4
    −100℃ 129000 9980 5660 3521 0.28 0.38
    ${X_{\text{t}}}/{\text{MPa}} $ $ {Y}_{\text{t}}、{Z}_{\text{t}}/\text{MPa} $ ${X_{\text{c}}}/{\text{MPa}} $ $ {Y}_{\text{c}}、{Z}_{\text{c}}/\text{MPa} $ $ {S}_{12}、{S}_{13}/\text{MPa} $ ${S_{23}}/{\text{MPa}} $
    150℃ 2180 1365 70 235 148 87
    25℃ 2424 1430 74 248 159 95
    −100℃ 2298 1510 68 260 167 90
    Notes: $ {E_{11}},{E_{22}},{E_{33}} $−Elastic modulus in directions 1, 2 and 3; ${G_{12}},{G_{13}},{G_{23}} $−Shear modulus in directions 12, 13 and 23; ${\nu }_{12},{\nu }_{13},{\nu }_{23} $−Poisson's ratio in directions 12, 13 and 23, ${X_{\text{t}}},{Y_{\text{t}}},{Z_{\text{t}}} $−Tensile strength in directions x, y and z; ${X_{\text{c}}},{Y_{\text{c}}},{Z_{\text{c}}} $−Compressive strength in directions x, y and z; $ {S}_{12},{S}_{13},{S}_{23} $−Shear strength in directions 12, 13 and 23.
    下载: 导出CSV

    表  2  材料热膨胀系数[14]

    Table  2.   Thermal expansion coefficient of materials[14]

    Material Aluminum alloy TC4 Composite
    (Fiber direction)
    Composite
    (Matrix direction)
    Thermal expansivity/(10−6K−1) 25 8.1 0.25 32.6
    下载: 导出CSV

    表  3  混合连接结构极限载荷Fmax试验值与仿真值对比

    Table  3.   Comparison between test value and simulation value of maximum load of hybrid joint structures

    Temperature Maximum load average/kN Dispersion coefficient/% Simulate maximum load/kN Error/%
    150℃ 40.51 2.94 39.45 2.6
    25℃ 42.74 0.92 40.81 4.5
    −100℃ 41.87 6.37 39.84 4.8
    下载: 导出CSV
  • [1] 翟月, 徐海萍, 代秀娟, 等. 先进复合材料的发展及应用[J]. 应用化工, 2018, 47(8): 1719-1722. doi: 10.3969/j.issn.1671-3206.2018.08.038

    ZHAI Yue, XU Haiping, DAI Xiujuan, et al. The development and state of advanced composited materials[J]. Applied Chemical Industry, 2018, 47(8): 1719-1722(in Chinese). doi: 10.3969/j.issn.1671-3206.2018.08.038
    [2] 高禹, 王钊, 陆春, 等. 高性能树脂基复合材料典型空天环境下动态力学行为研究现状[J]. 材料工程, 2015, 43(3): 106-112. doi: 10.11868/j.issn.1001-4381.2015.03.018

    GAO Yu, WANG Zhao, LU Chun, et al. State of arts of the dynamic mechanical behaviors of high performance polymer composites in typical aerospace environments[J]. Journal of Materials Engineering, 2015, 43(3): 106-112(in Chinese). doi: 10.11868/j.issn.1001-4381.2015.03.018
    [3] SZIROCZAK D, SMITH H. A review of design issues specific to hypersonic flight vehicles[J]. Progress in Aerospace Sciences, 2016, 84: 1-28. doi: 10.1016/j.paerosci.2016.04.001
    [4] 湛永钟, 张国定. 低地球轨道环境对材料的影响[J]. 宇航材料工艺, 2003, 33(1): 1-5, 23. doi: 10.3969/j.issn.1007-2330.2003.01.001

    ZHAN Yongzhong, ZHANG Guoding. Low earth orbit environmental effects on materials[J]. Aerospace Materials & Technology, 2003, 33(1): 1-5, 23(in Chinese). doi: 10.3969/j.issn.1007-2330.2003.01.001
    [5] FENG J M, GUO Z S. Effects of temperature and frequency on dynamic mechanical properties of glass/epoxy composites[J]. Journal of Materials Science, 2016, 51(5): 2747-2758. doi: 10.1007/s10853-015-9589-5
    [6] SHINDO Y, TAKEDA T, NARITA F. Mechanical response of nonwoven polyester fabric/epoxy composites at cryogenic temperatures[J]. Cryogenics, 2012, 52(10): 564-568. doi: 10.1016/j.cryogenics.2012.07.008
    [7] MCCARTHY C T, MCCARTHY M A, LAWLOR V P. Progressive damage analysis of multi-bolt composite joints with variable bolt–hole clearances[J]. Composites Part B: Engineering, 2005, 36(4): 290-305. doi: 10.1016/j.compositesb.2004.11.003
    [8] MCCARTHY M A, MCCARTHY C T, PADHI G S. A simple method for determining the effects of bolt-hole clearance on load distribution in single-column multi-bolt composite joints[J]. Composite Structures, 2006, 73(1): 78-87. doi: 10.1016/j.compstruct.2005.01.028
    [9] 赵丽滨, 秦田亮, 山美娟, 等. 基于渐进损伤分析的复合材料螺栓连接强度包线法研究[J]. 复合材料学报, 2015, 32(3): 823-830. doi: 10.13801/j.cnki.fhclxb.20150609.001

    ZHAO Libin, QIN Tianliang, SHAN Meijuan. Progressive damage analysis based strength envelope method research for composite bolted joints[J]. Acta Materiae Compositae Sinica, 2015, 32(3): 823-830(in Chinese). doi: 10.13801/j.cnki.fhclxb.20150609.001
    [10] ZHOU Y H, YAZDANI NEZHAD H, HOU C, et al. A three dimensional implicit finite element damage model and its application to single-lap multi-bolt composite joints with variable clearance[J]. Composite Structures, 2015, 131:1060-1072.
    [11] 唐玉玲, 任煜赫, 张峻霞, 等. 胶层对复合材料多螺栓连接力学性能及钉载分配的影响[J]. 复合材料学报, 2023, 40(6): 3601-3612. doi: 10.13801/j.cnki.fhclxb.20220809.002

    TANG Yuling, REN Yuhe, ZHANG Junxia, et al. Effect of the adhesive layer on mechanical properties and load distribution in multi-bolt composite joints[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3601-3612(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220809.002
    [12] TURVEY G J, SANA A. Pultruded GFRP double-lap single-bolt tension joints-Temperature effects on mean and characteristic failure stresses and knock-down factors[J]. Composite Structures, 2016, 153:624-631.
    [13] ZU S M, ZHOU Z G, ZHAO Y, et al. Effect of temperature and geometrical parameters on mechanical properties of pin-loaded fiber metal laminate joints[J]. Journal of Composite Materials, 2017, 51(22): 3163-3173. doi: 10.1177/0021998316687029
    [14] 杨白凤. 碳纤维/双马树脂基复合材料及其连接结构在空天环境温度下的力学行为[D]. 西安: 西北工业大学, 2018.

    YANG Baifeng. Mechanical behaviour of carbon fiber/BMI composites and joints at space environment temperature[D]. XI’AN: Northwestern Polytechnical University, 2018(in Chinese).
    [15] ABDUS S, CHENG X Q, HUANG W J, et al. Bearing failure and influence factors analysis of metal-to-composite bolted joints at high temperature[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(7):298.
    [16] 朱梓珣. 飞机复合材料层合板与金属连接结构热效应分析[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    ZHU Zixun. Thermal effect analysis of aircraft composite laminate and metal joint structure[D]. Harbin: Harbin Institute of Technology, 2019(in Chinese).
    [17] 蔡启阳, 赵琪. 环境温度和间隙对复合材料-金属混合结构机械连接钉载分配的影响[J]. 复合材料学报, 2021, 38(12): 4228-4238. doi: 10.13801/j.cnki.fhclxb.20210301.005

    CAI Qiyang, ZHAO Qi. Effects of temperature and clearance fit on the load distribution of composite-metal hybrid structures[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4228-4238(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210301.005
    [18] ASTM. Standard test method for bearing response of polymer matrix composite laminates: ASTM D5961/D5961M-17[S]. ASTM International, 2017
    [19] 金属材料拉伸试验 第2部分: 高温试验方法: GB/T 228.2—2015[S]. 2015.

    Tensile tests of metallic materials - Part 2: High temperature test methods: GB/T 228.2—2015[S]. 2015(in Chinese).
    [20] ABDUS S, CHENG X Q, HUANG W J, et al. Bearing failure and influence factors analysis of metal-to-composite bolted joints at high temperature[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(7): 298. doi: 10.1007/s40430-019-1797-5
    [21] CHENG X Q, YANG M M, ZHANG J, et al. Thermal behavior and tensile properties of composite joints with bonded embedded metal plate under thermal circumstance[J]. Composites Part B: Engineering, 2016, 99:340-347.
    [22] ABAQUS. ABAQUS Version 2020, Dassault Systemes[M]. Providence: ABAQUS, 2020.
    [23] 倪凯强. 复材/金属混合结构紧固件柔度与连接强度分析[D]. 西安: 西北工业大学, 2019.

    NI Kaiqiang. Analysis of fastener flexibility and strength for composite/metallic hybrid joints[D]. Xi’an, Northwestern Polytechnical University, 2019(in Chinese).
    [24] 陈龙. 复合材料-钛合金混合结构多钉连接分析与试验研究[D]. 南京: 南京航空航天大学, 2020.

    CHEN Long. Testing and numerical analysis of composite-to-titanium hybrid structure with multiple-bolted joints[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020(in Chinese).
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  248
  • HTML全文浏览量:  139
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-15
  • 修回日期:  2023-09-18
  • 录用日期:  2023-10-11
  • 网络出版日期:  2023-10-21
  • 刊出日期:  2024-06-15

目录

    /

    返回文章
    返回