留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波烧结复杂刃形TiB2基陶瓷刀具的设计制备及力学性能

季文彬 王子豪 戴士杰 程鹏翔 吴润禾

季文彬, 王子豪, 戴士杰, 等. 微波烧结复杂刃形TiB2基陶瓷刀具的设计制备及力学性能[J]. 复合材料学报, 2024, 41(7): 3778-3790.
引用本文: 季文彬, 王子豪, 戴士杰, 等. 微波烧结复杂刃形TiB2基陶瓷刀具的设计制备及力学性能[J]. 复合材料学报, 2024, 41(7): 3778-3790.
JI Wenbin, WANG Zihao, DAI Shijie, et al. Design, preparation and mechanical properties of microwave sintered TiB2-based ceramic tools with complex edge shape[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3778-3790.
Citation: JI Wenbin, WANG Zihao, DAI Shijie, et al. Design, preparation and mechanical properties of microwave sintered TiB2-based ceramic tools with complex edge shape[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3778-3790.

微波烧结复杂刃形TiB2基陶瓷刀具的设计制备及力学性能

基金项目: 国家自然科学基金 (52005154);科技创新2030-“新一代人工智能”重大项目(2021ZD0113100)
详细信息
    通讯作者:

    季文彬,博士,副教授,硕士生导师,研究方向为高效切削加工技术 E-mail: 2017082@hebut.edu.cn

  • 中图分类号: TB332

Design, preparation and mechanical properties of microwave sintered TiB2-based ceramic tools with complex edge shape

Funds: National Natural Science Foundation of China (52005154); Science and Technological Innovation 2030-"New Generation Artificial Intelligence" Major Project of China (2021ZD0113100)
  • 摘要: 基于微波烧结的特点,设计了复杂刃形TiB2基陶瓷刀具的结构参数。利用有限元仿真,研究了在车削球墨铸铁QT450时刀具结构参数对车削力和车削温度的影响。确定了复杂刃形TiB2基陶瓷刀具的最优刀具前角为5°、后角为6°、刀尖圆弧半径为0.8 mm。采用微波烧结技术制备了复杂刃形TiB2基陶瓷刀具,研究了压制压力和保压时间对复杂刃形TiB2基陶瓷刀具的相对密度、力学性能和微观组织的影响。结果表明,压制压力对晶粒的异常生长影响较大,合理的压制压力可以抑制晶粒的异常长大,改善刀具断裂模式,进而提高刀具性能。合理的保压时间可以使刀具表面的白色相分局均匀,防止聚集,这有利于刀具断裂韧度的提高。在压制压力为200 MPa,保压时间为4 min时,刀具各部位尺寸收缩率较为平均,成形精度较高,致密度最高,微观组织更加均匀,晶粒排列更加紧密,综合力学性能最优。

     

  • 图  1  复杂刃形TiB2基陶瓷车刀片结构示意图(单位:mm)

    Figure  1.  Schematic structure of TiB2-based ceramic turning insert with complex edge shape (Unit: mm)

    r is the radius of the tip circle;γ0 is the tool front angle;α0 is the tool back angle

    图  2  不同TiB2基陶瓷刀具结构参数对车削力和车削温度影响的仿真结果

    Figure  2.  Simulation results of effects of different TiB2-based ceramic tool structure parameters on turning force and turning temperature

    图  3  不同TiB2基陶瓷刀具后角过滤后的车削力曲线图

    Figure  3.  Turning force profile of different TiB2-based ceramic tool after back-angle filtration

    图  4  复杂刃形TiB2基陶瓷刀具模具和刀具试样烧结前后示意图

    Figure  4.  Before and after schematic diagrams of TiB2-based ceramic tool moulds with complex edge shapes and microwave sintered tool specimens.

    图  5  压制压力对复杂刃形TiB2基陶瓷刀具相对密度和力学性能的影响

    Figure  5.  Effect of pressing pressure on the relative density and mechanical properties of TiB2-based ceramic tools with complex blades

    图  6  压制压力为300 MPa时烧结后的复杂刃形TiB2基陶瓷刀具试样底部脱落

    Figure  6.  Bottom detachment of sintered complex-edged TiB2-based ceramic tool specimens at a pressing pressure of 300 MPa

    图  7  不同压制压力的复杂刃形TiB2基陶瓷刀具中间抛光表面的SEM图像

    Figure  7.  SEM images of intermediate polished surfaces of complex edge-shaped TiB2-based ceramic tools with different pressing pressures

    图  8  不同压制压力的复杂刃形TiB2基陶瓷刀具断裂面的SEM图像

    Figure  8.  SEM images of fracture surfaces of TiB2-based ceramic tools with complex edge shapes at different pressing pressures

    图  9  保压8 min烧结后的复杂刃形TiB2基陶瓷刀具试样发生开裂

    Figure  9.  Cracking of sintered TiB2-based ceramic tool specimens with complex cutting edges after holding pressure for 8 minutes

    图  10  保压时间对复杂刃形TiB2基陶瓷刀具相对密度和力学性能的影响

    Figure  10.  Influence of pressure holding time on the relative density and mechanical properties of TiB2-based ceramic cutting tools withcomplex blades

    图  11  不同保压时间的复杂刃形TiB2基陶瓷刀具抛光表面的SEM图像

    Figure  11.  SEM images of polished surfaces of TiB2-based ceramic tools with complex edge shapes for different holding times

    图  12  不同保压时间的复杂刃形TiB2基陶瓷刀具断裂面的SEM图像

    Figure  12.  SEM images of fracture surfaces of TiB2-based ceramic tools with complex edge shapes for different holding times

    表  1  复杂刃形TiB2基陶瓷刀具车削仿真结构参数设计

    Table  1.   Structural parameter design for turning simulation of TiB2-based ceramic tools with complex edge shape

    Research objective Tool front angle γ0/(°) Tool back angle α0/(°) Tool tip arc radius r/mm
    Design parameter −5, 0, 5, 10, 15 0, 3, 6, 9, 12 0.4, 0.6, 0.8, 1.0, 1.2
    下载: 导出CSV

    表  2  复杂刃形TiB2基陶瓷刀具原材料及特性

    Table  2.   Raw materials and characteristics of TiB2-based ceramic tools with complex cutting edges

    Powder composition Densities/(g·cm−3) Particle size/μm Purity/% Manufacturer
    TiB2 4.502 0.5 99.9 Shanghai Chaowei
    TiC 4.930 0.5 99.9 Shanghai Chaowei
    HfC 12.700 0.1 99.9 Shanghai Chaowei
    Ni 8.902 0.6 99.9 Shanghai Chaowei
    Mo 10.200 0.5 99.9 Shanghai Chaowei
    下载: 导出CSV

    表  3  不同压制压力下复杂刃形TiB2基陶瓷刀具试样烧结前后尺寸和收缩率

    Table  3.   Dimensions and shrinkage of TiB2-based ceramic cutting tool samples before and after sinteringatdifferent press pressures

    Blade sample Pre-sintering After sintering Percentage of
    contraction/%
    Blade sample A(2 min、150 MPa) Knife blade/mm 3.30 2.80 15.15
    Thickness/mm 5.70 4.80 15.79
    Length of side/mm 15.50 12.70 18.06
    volumetric/mm3 592.98 335.24 43.47
    Blade sample B(2 min、200 MPa) Knife blade/mm 3.30 2.70 18.18
    Thickness/mm 5.50 4.40 20.00
    Length of side/mm 15.50 12.92 16.64
    volumetric/mm3 572.17 318.04 44.42
    Blade sample C(2 min、250 MPa) Knife blade/mm 3.30 2.80 15.15
    Thickness/mm 5.50 4.52 17.82
    Length of side/mm 15.50 12.90 16.77
    volumetric/mm3 572.17 325.70 43.08
    Blade sample D(2 min、300 MPa) Knife blade/mm 3.30 2.80 15.15
    Thickness/mm 5.30 4.50 15.09
    Length of side/mm 15.50 13.14 15.23
    volumetric/mm3 551.37 336.44 38.98
    下载: 导出CSV

    表  4  不同压制压力下复杂刃形TiB2基陶瓷刀具试样烧结前后的结构尺寸及误差

    Table  4.   Structural dimensions and errors of TiB2-based ceramic tool specimens with complex cutting edges before and after sintering under different pressing pressures.

    Blade sample Pre-sintering After sintering Errors/%
    Blade sample A (2 min、150 MPa) Rake angle/° 5.00 5.55 11.00
    Tool tip arc radius/mm 0.80 0.61 23.75
    Blade sample B (2 min、200 MPa) Rake angle/° 5.00 5.35 7.00
    Tool tip arc radius/mm 0.80 0.68 15.00
    Blade sample C (2 min、250 MPa) Rake angle/° 5.00 5.65 13.00
    Tool tip arc radius/mm 0.80 0.66 17.50
    Blade sample D (2 min、300 MPa) Rake angle/° 5.00 5.65 13.00
    Tool tip arc radius/mm 0.80 0.64 20.00
    下载: 导出CSV

    表  5  图7中A~F各点位的EDS分析

    Table  5.   EDS analysis of each point from A to F in Figure 5

    Test point Element/wt%
    B C Ti Hf Ni Mo
    A 54.46 39.86 3.49 0.91 1.24 0.05
    B 60.84 21.42 15.39 1.11 1.25 0.00
    C 21.84 32.16 32.73 13.24 0.02 0.01
    D 54.44 37.53 7.80 0.01 0.03 0.19
    E 25.39 42.18 24.16 1.39 6.86 0.01
    F 10.85 38.55 10.24 40.36 0.01 0.00
    下载: 导出CSV

    表  6  不同保压时间下复杂刃形TiB2基陶瓷刀具试样烧结前后尺寸和收缩率

    Table  6.   Dimensions and shrinkage of TiB2-based ceramic cutting tool samples before and after sintering at different pressure holding times

    Blade sample Pre-sintering After sintering Percentage of contraction/%
    Blade sample B1 (2 min、200 MPa) Knife blade/mm 3.30 2.70 18.18
    Thickness/mm 5.50 4.40 20.00
    Length of side/mm 15.50 12.92 16.64
    volumetric/mm3 572.17 318.04 44.42
    Blade sample B2 (4 min、200 MPa) Knife blade/mm 3.30 2.74 16.97
    Thickness/mm 5.70 4.75 16.67
    Length of side/mm 15.50 12.82 17.29
    volumetric/mm3 592.98 338.04 42.99
    Blade sample B3 (6 min、200 MPa) Knife blade/mm 3.30 2.80 15.15
    Thickness/mm 5.40 4.43 17.96
    Length of side/mm 15.50 12.85 17.10
    volumetric/mm3 561.77 316.75 43.62
    Blade sample B4 (8 min、200 MPa) Knife blade/mm 3.30 The specimen cracked in two parts and could not be tested
    Thickness/mm 5.30
    Length of side/mm 15.50
    volumetric/mm3 551.37
    下载: 导出CSV

    表  7  不同保压时间下复杂刃形TiB2基陶瓷刀具试样烧结前后的结构尺寸及误差

    Table  7.   Structural dimensions and errors of TiB2-based ceramic tool specimens with complex cutting edge shape before and after sintering at different pressure holding times

    Blade sample Pre-sintering After sintering Error/%
    Blade sample B1(2 min、200 MPa) Rake angle/(°) 5.00 5.35 7.00
    Tool tip arc radius/mm 0.80 0.68 15.00
    Blade sample B2(4 min、200 MPa) Rake angle/(°) 5.00 5.37 7.40
    Tool tip arc radius/mm 0.80 0.69 13.75
    Blade sample B3(6 min、200 MPa) Rake angle/(°) 5.00 5.45 9.00
    Tool tip arc radius/mm 0.80 0.69 13.75
    Blade sample B4(8 min、200 MPa) Rake angle/(°) 5.00 3.5 30.00
    Tool tip arc radius/mm 0.80 0.61 23.75
    下载: 导出CSV
  • [1] 黄小晓, 涂赣峰, 王术新, 等. TiB2涂层的制备及其应用研究进展[J]. 稀有金属材料与工程, 2022, 51(3): 1087-1099.

    HUANG Xiaoxiao, TU Ganfeng, WANG Shuxin, et al. Research progress on preparation and application of TiB2 coating[J]. Rare Metal Materials and Engineering, 2022, 51(3): 1087-1099(in Chinese).
    [2] SHUSTER L S, FOX-RABINOVICH G S, CHERTOVSKIKH S V. Influence of cutting conditions on the wear resistance of tools with a TiB2 coating during titanium alloy machining[J]. Journal of Friction and Wear, 2021, 42(6): 466-472. doi: 10.3103/S1068366621060118
    [3] 张剑平, 张萌, 艾云龙. TiB2在原位反应制备铜基复合材料中的应用现状[J]. 特种铸造及有色合金, 2008, (7): 544-547,490.

    ZHANG Jianping, ZHANG Meng, AI Yunlong, et ai. Application status of TiB2 in in-situ reaction preparation of copper matrix composites[J]. Special Casting & Nonferrous Alloys, 2008, (7): 544-547,490(in Chinese).
    [4] GONG F, ZHAO J, LIU G, et al. Design and fabrication of TiB2-TiC-Al2O3 gradient composite ceramic tool materials reinforced by VC/Cr3C2 additives[J]. Ceramics International, 2021, 47(14): 20341-20351. doi: 10.1016/j.ceramint.2021.04.042
    [5] WU N, XUE F, YANG Q, et al. Microstructure and mechanical properties of TiB2-based composites with high volume fraction of Fe-Ni additives prepared by vacuum pressureless sintering[J]. Ceramics International, 2017, 43(1): 1394-1401. doi: 10.1016/j.ceramint.2016.10.100
    [6] YAN S R, LV Z J. FANG L J. Effects of SiC amount and morphology on the properties of TiB2-based composites sintered by hot-pressing[J]. Ceramics International, 2020, 46(11): 18813-18825. doi: 10.1016/j.ceramint.2020.04.199
    [7] 刘元会, 石少杰, 曹宇航, 等. 热压烧结制备碳纤维/氧化铝陶瓷复合材料的负介电行为[J]. 复合材料学报, 2022, 39(08): 4085-4092. doi: 10.13801/j.cnki.fhclxb.20211012.003

    LIU Yuanhui, SHI Shaojie, CAO Yuhang, et al. Negative dielectric behavior of carbon fiber/alumina ceramic composites prepared by hot press sintering[J]. Acta Materiae Compositae Sinica, 2022, 39(08): 4085-4092(in Chinese). doi: 10.13801/j.cnki.fhclxb.20211012.003
    [8] DING X, PAN K, LIU Z, et al. Effects of TiC particle size on microstructures and mechanical properties of B4C-TiB2 composites prepared by reactive hot-press sintering of TiC-B mixtures[J]. Ceramics International, 2020, 46(8): 10425-10430. doi: 10.1016/j.ceramint.2020.01.041
    [9] CHEN D, ZHANG K, ZENG J, et al. High-strength TiB2-B4C composite ceramics sintered by spark plasma sintering[J]. International Journal of Applied Ceramic Technology, 2022, 19(4): 1949-1955. doi: 10.1111/ijac.14051
    [10] 张新杰, 崔洪芝, 王明亮, 等. 放电等离子烧结Ni/TiB2-TiC复合材料微观组织及磨损性能[J]. 复合材料学报, 2018, 35(01): 158-167.

    ZHANG Xinjie, CUI Hongzhi, WANG Mingliang, et al. Microstructure and wear properties of Ni/TiB2-TiC composites prepared by spark plasma sintering[J]. Acta Materiae Compositae Sinica, 2018, 35(01): 158-167(in Chinese).
    [11] XU G F, ZHUANG H R, WU F Y, et al. Microwave reaction sintering of α-β-sialon composite ceramics - ScienceDirect[J]. Journal of the European Ceramic Society, 1997, 17(5): 675-680. doi: 10.1016/S0955-2219(96)00114-8
    [12] SINGHAL C, MURTAZA Q, PARVEJ. Microwave sintering of advanced composites materials: A Review[J]. Materials Today:Proceedings, 2018, 5(11+3): 24287-24298.
    [13] RAMESH S, ZULKIFLI N, TAN C Y, et al. Comparison between microwave and conventional sintering on the properties and microstructural evolution of tetragonal zirconia[J]. Ceramics International, 2018, 44(8): 8922-8927. doi: 10.1016/j.ceramint.2018.02.086
    [14] AGRAWAL D, RAGULYA A, DEMIRSKYI D. Tough ceramics by microwave sintering of nanocrystalline titanium diboride ceramics[J]. Ceramics International, 2014, 40(1B): 1303-1310.
    [15] DEMIRSKYI D, CHENG J, AGRAWAL D, et al. Densification and grain growth during microwave sintering of titanium diboride[J]. Scripta Materialia, 2013, 69(8): 610-613. doi: 10.1016/j.scriptamat.2013.07.012
    [16] 方一航, 夏伶勤, 陈光, 等. 成型压力对Ti(C, N)基金属陶瓷微观组织结构和力学性能的影响[J]. 材料与冶金学报, 2023, 22(3): 249-255.

    FANG Yihang, XIA Lingqin, CHEN Guang, et al. Effect of molding pressure on microstructure and mechanical properties of Ti(C, N) matrix ceramics[J]. Journal of Materials and Metallurgy, 2023, 22(3): 249-255(in Chinese).
    [17] ZONG H, ZHANG C, RU H, et al. Effect of forming pressure on microstructure and mechanical properties of B4C-SiC-Si ceramic composites[J]. Key Engineering Materials, 2018, 768(1): 152-158.
    [18] SARAVANAMURUGAN S, SUNDAR B S, PRANAV R S, et al. Optimization of cutting tool geometry and machining parameters in turning process[J]. Materials Today:Proceedings, 2021, 38(5): 3351-3357.
    [19] JI Junhao, YANG Qi, CHEN Peng, et al. An improved mathematical model of cutting temperature in end milling Al7050 based on the influence of tool geometry parameters and milling parameters[J]. Mathematical Problems in Engineering, 2021, 2021: 1-10
    [20] MANUEL N, BELTRãO D, GALVãO I, et al. Influence of tool geometry and process parameters on torque, temperature, and quality of friction stir welds in dissimilar al alloys[J]. Materials, 2021, 14(20): 6020. doi: 10.3390/ma14206020
    [21] 胡波, 赵先锋, 史红艳, 等. 基于AdvantEdge切削工艺参数及刀具几何参数对切削力影响研究[J]. 组合机床与自动化加工技术, 2021, (7): 128-132. doi: 10.13462/j.cnki.mmtamt.2021.07.030

    HU Bo, ZHAO Xianfeng, SHI Hongyan, et al. Research on the influence of cutting process parameters and tool geometry parameters on cutting force based on AdvantEdge[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2021, (7): 128-132(in Chinese). doi: 10.13462/j.cnki.mmtamt.2021.07.030
    [22] 殷增斌, 朱智勇, 王子祥, 等. 复杂刃形陶瓷刀具微波烧结技术研究[J]. 中国机械工程, 2022, 33(8): 899-907.

    YIN Zengbin, ZHU Zhiyong, WANG Zixiang, et al. Research on microwave sintering technology of complex blade ceramic cutte[J]. China Mechanical Engineering, 2022, 33(8): 899-907(in Chinese).
    [23] 洪东波, 殷增斌, 陈为友, 等. 微波烧结复杂刃形SiAlON陶瓷刀具铣削GH4169高温合金性能研究[J]. 中国机械工程, 2023, 34(7); 770-779, 788.

    HONG Dongbo, YIN Zengbin, CHEN Weiyou, et al. Study on milling performance of GH4169 superalloy with complex blade SiAlON ceramic tool by microwave sintering[J]. China Mechanical Engineering, 2023, 34(7); 770-779, 788(in Chinese).
    [24] 程德俊, 许丰, 张春燕, 等. 薄壁件铣削加工刀具几何参数优化[J]. 组合机床与自动化加工技术, 2020, (4): 130-3,8. doi: 10.13462/j.cnki.mmtamt.2020.04.030

    CHENG Dejun, XU Feng, ZHANG Chunyan, et al. Optimization of milling cutter parameters for machining thin-walled parts[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2020, (4): 130-3,8(in Chinese). doi: 10.13462/j.cnki.mmtamt.2020.04.030
    [25] TOKTAŞ A. Determination of Vickers indentation fracture toughness of boronised alloyed ductile iron[J]. Transactions of the Institute of Metal Finishing, 2019, 97(5): 271-276. doi: 10.1080/00202967.2019.1646458
    [26] 达丽梅, 周后明, 周金虎, 等. Al2O3颗粒增韧TiB2-Ti(C(0.5), N(0.5))复合陶瓷刀具的力学性能及微观结构[J]. 材料科学与工程学报, 2022, 40(05): 785-790.

    DA Limei, ZHOU Houming, ZHOU Jinhu, et al. Mechanical properties and microstructure of TiB2-Ti(C(0.5), N(0.5)) composite ceramic tools toughened with Al2O3 particles[J]. Journal of Materials Science and Engineering, 2022, 40(05): 785-790(in Chinese).
    [27] 张广森, 季文彬, 戴士杰, 等. 微波烧结Ti(C, N)-WC-Al2O3/Ti(C, N)-WC叠层陶瓷的微观结构和力学性能[J]. 硅酸盐学报, 2022, 50(12): 3212-3221.

    ZHANG Guangsen, JI Wenbin, DAI Shijie, et al. Structural Design And Mechanical Properties of Microwave Sintered Ti(C, N)-WC-Al2O3/Ti(C, N)-WC Laminated Ceramics[J]. Bulletin of the Chinese Ceramic Society, 2022, 50(12): 3212-3221(in Chinese).
    [28] 王波, 王杨, 董中奇, 等. 压制压力对机械合金化Cu20Fe80合金微波烧结组织及性能的影响[J]. 粉末冶金工业, 2018, 28(3): 24-8.

    WANG Bo, WANG Yang, DONG Zhongqi, et al. Effect of compaction pressure on microstructure and properties of mechanically alloyed Cu20Fe80 alloy during microwave sintering[J]. Powder Metallurgy Industry, 2018, 28(3): 24-8(in Chinese).
    [29] Natalia D. L, Wijanarko R, Angela I, et al. Influence of compaction pressure on density, bending strength, and microstructures of Al2O3-SiC-ZrO2 ceramic matrix composites with Nb2O5 additives[J]. Materials Science Forum, 2018, 923(1): 61-65.
    [30] 周后明, 陈皓月, 李神贵. 基于梯度结构的Al2O3/ZrO2陶瓷刀具材料的制备及其力学性能[J]. 中国机械工程, 2023, 34(10): 1199-1207. doi: 10.3969/j.issn.1004-132X.2023.10.009

    ZHOU Houming, CHEN Haoyue, LI Shengui. Preparation and mechanical properties of Al2O3/ZrO2 ceramic tool materials based on gradient structure[J]. China Mechanical Engineering, 2023, 34(10): 1199-1207(in Chinese). doi: 10.3969/j.issn.1004-132X.2023.10.009
  • 加载中
图(12) / 表(7)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  105
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-28
  • 修回日期:  2023-10-24
  • 录用日期:  2023-11-07
  • 网络出版日期:  2023-11-18
  • 刊出日期:  2024-07-15

目录

    /

    返回文章
    返回