留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯纳米片/(酚酞聚芳醚酮-环氧树脂)双逾渗导热复合材料的制备和性能

欧阳泽宇 王珂珂 饶琼 张志龙 扶碧波 彭雄奇

欧阳泽宇, 王珂珂, 饶琼, 等. 石墨烯纳米片/(酚酞聚芳醚酮-环氧树脂)双逾渗导热复合材料的制备和性能[J]. 复合材料学报, 2020, 37(0): 1-10
引用本文: 欧阳泽宇, 王珂珂, 饶琼, 等. 石墨烯纳米片/(酚酞聚芳醚酮-环氧树脂)双逾渗导热复合材料的制备和性能[J]. 复合材料学报, 2020, 37(0): 1-10
Zeyu OUYANG, Keke WANG, Qiong RAO, Zhilong ZHANG, Bibo FU, Xiongqi* PENG. Preparation and properties of thermally conductive grapheme nanoplates/(polyetherketone cardo-epoxy resin) composites with double percolation structures[J]. Acta Materiae Compositae Sinica.
Citation: Zeyu OUYANG, Keke WANG, Qiong RAO, Zhilong ZHANG, Bibo FU, Xiongqi* PENG. Preparation and properties of thermally conductive grapheme nanoplates/(polyetherketone cardo-epoxy resin) composites with double percolation structures[J]. Acta Materiae Compositae Sinica.

石墨烯纳米片/(酚酞聚芳醚酮-环氧树脂)双逾渗导热复合材料的制备和性能

基金项目: 国家自然科学基金(11972225)
详细信息
    通讯作者:

    彭雄奇,博士,教授,博士生导师,研究方向为复合材料及其成形、力学  E-mail:xqpeng@sjtu.edu.cn

  • 中图分类号: TB332

Preparation and properties of thermally conductive grapheme nanoplates/(polyetherketone cardo-epoxy resin) composites with double percolation structures

  • 摘要: 为了在较低的导热填料含量下提高环氧树脂的热导率,通过溶液法制备了石墨烯纳米片/(酚酞聚芳醚酮-环氧树脂)(GNP/(PEK-C-EP))复合材料。基于接触角测量,计算并预测了GNP的选择性分布,并通过SEM和激光闪光法研究了GNP和PEK-C含量对复合材料的微观结构和热导率的影响。结果表明,当PEK-C的含量为20wt%时,GNP选择性分布在PEK-C中形成了双逾渗结构的GNP/(PEK-C-EP)复合材料,从而构建了连续导热通道。对于石墨烯纳米片/环氧树脂(GNP/EP)复合材料,GNP含量为1wt%时达到最高导热率0.375 W·m−1·K−1。对于GNP/(PEK-C-EP)复合材料,GNP含量为0.5wt%时达到最高导热率0.371 W·m−1·K−1,比0.5wt%GNP的GNP/EP复合材料的热导率高48%,与1wt%GNP的GNP/EP复合材料的热导率基本相同。表明复合材料的填料量减少50%,利用双逾渗效应可以有效减少导热填料用量。此外,比较了纯EP和GNP/(PEK-C-EP)的玻璃化转变温度、热稳定性和热膨胀系数,结果表明,GNP/(PEK-C-EP)复合材料的热性能优于纯EP。
  • 图  1  PEK-C和EP分别与去离子水和乙二醇的接触角图像

    Figure  1.  Images of contact angles of PEK-C and EP with deionized water and glycol respectively

    图  2  0.5GNP10PEK-C90EP断面形貌SEM图

    Figure  2.  SEM images of fracture surfaces of 0.5GNP10PEK-C90EP

    图  3  不同GNP含量时20PEK-C80EP复合材料的断面微观形貌SEM图

    Figure  3.  SEM micrographs of fracture surfaces of 20PEK-C80EP composites with different GNP contents

    图  4  (a)EP基和20PEK-C80EP基复合材料在不同GNP含量下的热导率(b)热逾渗幂律方程对GNP20PEK-C80EP复合材料热导率的拟合曲线

    Figure  4.  (a) Thermal conductivities of composites with EP and 20PEK-C80EP matrix at different GNP filler contents (b) Fitting curve of thermal conductivity of GNP20PEK-C80EP composites by thermal percolation power law equation

    图  5  EP和0.5GNP20PEK-C80EP的热流曲线

    Figure  5.  Heat flow curves of EP and 0.5GNP20PEK-C80EP

    图  6  EP和0.5GNP20PEK-C80EP的热重曲线

    Figure  6.  Thermogravimetric curves of EP and 0.5GNP20PEK-C80EP

    图  7  EP、0.3GNP20PEK-C80EP和0.5GNP20PEK-C80EP热膨胀曲线

    Figure  7.  Thermal expansion curves of pure epoxy, 0.3GNP20PEK-C80EP and 0.5GNP20PEK-C80EP

    表  1  试剂表面张力及其色散和极性分量[12]

    Table  1.   Surface tensions, dispersive and polarcomponents of chemical reagents

    Reagents$\gamma $/(mN/m)${\gamma ^{\rm{d}}}$/(mN/m)${\gamma ^{\rm{p}}}$/(mN/m)
    Ethylene glycol 47.5 31.2 16.3
    Deionized water 71.5 28.2 43.3
    Notes: $\gamma $ is thesurface tension; ${\gamma ^{\rm{d}}}$ and ${\gamma ^{\rm{p}}}$ are thedispersive and polar components of the surface tension, respectively.
    下载: 导出CSV

    表  2  环氧树脂(EP)、酚酞聚芳醚酮(PEK-C)和石墨烯纳米片(GNP)的表面张力

    Table  2.   Surface tensions of epoxy resin, PEK-C and graphene nanoplate

    ComponentsHarmonicGeometricRef.
    $\gamma $/(mN/m)${\gamma ^{\rm{d}}}$/(mN/m)${\gamma ^{\rm{p}}}$/(mN/m)$\gamma $/(mN/m)${\gamma ^{\rm{d}}}$/(mN/m)${\gamma ^{\rm{p}}}$/(mN/m)
    EP 43.07 10.35 32.72 40.49 7.71 32.78 tested
    PEK-C 33.84 11.46 22.38 30.04 15.41 14.63 tested
    GNP 23.20 10.80 12.40 22.76 19.49 3.27 [12]
    Notes: “Harmonic” indicates that the surface tensions can be obtained from the equation (6), and “Geometric” indicates that the surface tensions can be obtained from the equation (7).
    下载: 导出CSV

    表  3  环氧树脂(EP)、酚酞聚芳醚酮(PEK-C)和石墨烯纳米片(GNP)之间的界面张力

    Table  3.   Interfacial tensions of epoxy resin, PEK-C and graphene nanoplate

    Component couple${\gamma _{1 - 2}}$/(mN/m)
    Geometric-GeometricGeometric-HarmonicHarmonic-GeometricHarmonic-Harmonic
    EP-PEK-C4.931.019.511.99
    EP-GNP18.114.8429.379.16
    PEK-C-GNP4.341.477.752.88
    Notes: “Geometric-Geometric” and other similar marks indicate “the formula for the surface tension data source (equation (6) or (7)) - the formula for calculating the interface tension (equation (4) or (5))”.
    下载: 导出CSV

    表  4  石墨烯纳米片填充的酚酞聚芳醚酮-环氧树脂共混物(GNP/(PEK-C-EP))的润湿系数${\omega _\alpha }$

    Table  4.   Wetting coefficient ωα for the PEK-C-EP blend filled with graphene nanoplates

    Materials${\omega _\alpha }$ calculated from Geometric-Geometric${\omega _\alpha }$ calculated from Geometric-Harmonic${\omega _\alpha }$ calculated from Harmonic-Geometric${\omega _\alpha }$ calculated from Harmonic-HarmonicThe location of GNP
    GNP/(PEK-C-EP)2.79123.34652.27273.1468PEK-C
    下载: 导出CSV

    表  5  EP和0.5GNP20PEK-C80EP的T5%、T10% 和残炭率(Rw)

    Table  5.   T5%, T10% and residual carbon ratios of pure epoxy and 0.5GNP20PEK-C80EP

    SampleT5%/℃T10%/℃Rw/%
    EP322.7352.624.2
    0.5GNP20PEK-C80EP320.1354.930.5
    下载: 导出CSV
  • [1] LIU S, CHEVALI V S, Xu Z G, et al. A review of extending performance of epoxy resins using carbon nanomaterials[J]. Composites Part B: Engineering,2018,136:197-214. doi:  10.1016/j.compositesb.2017.08.020
    [2] GUO Y Q, RUAN K P, SHI X T, et al. Factors affecting thermal conductivities of the polymers and polymer composites: A review[J]. Composites Science and Technology,2020,193:108134. doi:  10.1016/j.compscitech.2020.108134
    [3] CHEN H, GINZBURG V V, YANG J, et al. Thermal Conductivity of Polymer-Based Composites: Fundamentals and Applications[J]. Progress in Polymer Science,2016,59:41-85. doi:  10.1016/j.progpolymsci.2016.03.001
    [4] ZHANG R H, SHI X T, TANG L, et al. Thermally conductive and insulating epoxy composites by synchronously incorporating Si-sol functionalized glass fibers and boron nitride fillers[J]. Chinese Journal of Polymer Science,2020,38:730-739. doi:  10.1007/s10118-020-2391-0
    [5] 钟洨, 孟旭东, 张睿涵, 等. 改性纳米BN/甲基乙烯基硅橡胶导热复合材料的制备[J]. 复合材料学报, 2019, 36(11):2644-2650.

    ZHONG Xiao, MENG Xudong, ZHANG Ruihan, et al. Preparation of functionalized nano BN/methyl vinyl silicone rubber thermally conductive composites[J]. Acta MateriaeCompositaeSinica,2019,36(11):2644-2650(in Chinese).
    [6] LEE E S, LEE S M, SHANEFIELD D J, et al. Enhanced Thermal Conductivity of Polymer Matrix Composite via High Solids Loading of Aluminum Nitride in Epoxy Resin[J]. Journal of the American Ceramic Society,2008,91(4):1169-1174. doi:  10.1111/j.1551-2916.2008.02247.x
    [7] SUMITA M, SAKATA K, ASAI S, et al. Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black[J]. Polymer Bulletin,1991,25(2):265-271. doi:  10.1007/BF00310802
    [8] BONNET P, SIREUDE D, GARNIER B, et al. Thermal properties and percolation in carbon nanotube-polymer composites[J]. Applied Physics Letters,2007,91(20):787.
    [9] CHEN J, CUI X, SUI K, et al. Balance the electrical properties and mechanical properties of carbon black filled immiscible polymer blends with a double percolation structure[J]. Composites Science and Technology,2017,140:99-105. doi:  10.1016/j.compscitech.2016.12.029
    [10] LIU W, YANG Y, NIE M. Constructing a double-percolated conductive network in a carbon nanotube/polymer-based flexible semiconducting composite[J]. Composites Science and Technology,2018,154:45-52. doi:  10.1016/j.compscitech.2017.11.003
    [11] QI X Y, YAN D, JIANG Z, et al. Enhanced Electrical Conductivity in Polystyrene Nanocomposites at Ultra-Low Graphene Content[J]. ACS Appl Mater Interfaces,2011,3(8):3130-3133. doi:  10.1021/am200628c
    [12] HUANG J, ZHU Y, XU L, et al. Massive enhancement in the thermal conductivity of polymer composites by trapping graphene at the interface of a polymer blend[J]. Composites Science and Technology,2016,129:160-165. doi:  10.1016/j.compscitech.2016.04.029
    [13] MA C G, XI D Y, LIU M. Epoxy resin/polyetherimide/carbon black conductive polymer composites with a double percolation structure by reaction-induced phase separation[J]. Journal of Composite Materials,2013,47(9):1153-1160. doi:  10.1177/0021998312446180
    [14] YAN Z, CHEN F, LI Z, et al. Ubiquitous nature of the three-layered structure formation in the asymmetric phase separation of the epoxy/thermoplastic blends[J]. Polymer,2012,53(2):588-594. doi:  10.1016/j.polymer.2011.11.051
    [15] ZHANG J, GUO Q, FOX B L. Study on thermoplastic-modified multifunctional epoxies: Influence of heating rate on cure behaviour and phase separation[J]. Composites Science and Technology,2009,69(7-8):1172-1179. doi:  10.1016/j.compscitech.2009.02.016
    [16] ASTM E1461-92A. Standard test method for thermal diffusivity of solids by the laser flash method. Annual Book of ASTM Standards.
    [17] YANG X T, Liang C B, Ma T B, et al. A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods[J]. Advanced Composites and Hybrid Materials,2018,1:207-230. doi:  10.1007/s42114-018-0031-8
    [18] CUI L, ZHANG Y, ZHANG Y, et al. Electrical properties and conductive mechanisms of immiscible polypropylene/Novolac blends filled with carbon black[J]. European Polymer Journal,2007,43(12):5097-5106. doi:  10.1016/j.eurpolymj.2007.08.023
    [19] WU S. Polymer interface and adhesion[M]. New York: CRC Press. 1982.
    [20] ZHANG Y, CHEN F, LI Z, et al. Ubiquitous nature of the three-layered structure formation in the asymmetric phase separation of the epoxy/thermoplastic blends[J]. Polymer,2012,53(2):588-594. doi:  10.1016/j.polymer.2011.11.051
    [21] ZHANG J, NIU H, ZHOU J, et al. Synergistic effects of PEK-C/VGCNF composite nanofibres on a trifunctional epoxy resin[J]. Composites Science and Technology,2011,71(8):1060-1067. doi:  10.1016/j.compscitech.2011.03.008
    [22] ZHENG N, SUN W, LIU H-Y, et al. Effects of carboxylated carbon nanotubes on the phase separation behaviour and fracture-mechanical properties of an epoxy/polysulfone blend[J]. Composites Science and Technology,2018,159(3):180-188.
    [23] KWON S Y, KWON I M, KIM Y G, et al. A large increase in the thermal conductivity of carbon nanotube/polymer composites produced by percolation phenomena[J]. Carbon,2013,55(2):285-290.
    [24] 石刚, 张鉴炜, 雷博文, 等. 石墨烯微片尺寸对石墨烯纸热导率的影响[J]. 国防科技大学学报, 2016, 38(3):112-116. doi:  10.11887/j.cn.201603019

    SHI Gang, ZHANG Jianwei, LEI Bowen, et al. Effects of graphene sheets size on thermal conductivity of graphene paper[J]. Journal of National University of Defense Technology,2016,38(3):112-116(in Chinese). doi:  10.11887/j.cn.201603019
    [25] LIU W, XU K, WANG C, et al. Carbon nanofibers reinforced soy polyol-based polyurethane nanocomposites[J]. Journal of Thermal Analysis and Calorimetry,2016,123(3):2459-2468. doi:  10.1007/s10973-015-4690-1
    [26] SUN Y, ZHANG Y, XU K, et al. Thermal, mechanical properties, and low-temperature performance of fibrous nanoclay-reinforced epoxy asphalt composites and their concretes[J]. Journal of Applied Polymer Science,2015,132(12):41694.
    [27] 张昊明, 赵永涛, 张红松, 等. 热压烧结镀Cr碳纤维/Cu复合材料的制备及热性能[J]. 复合材料学报, 2018, 35(9):2481-2487.

    ZHANG Haoming, ZHAO Yongtao, ZHANG Hongsong, et al. Fabrication and thermal properties of hot press sintered Cr-coated carbon fiber/Cu composites[J]. Acta MateriaeCompositaeSinica,2018,35(9):2481-2487(in Chinese).
    [28] 王菲菲, 王志鹏, 王红华, 等. 主链含N-烷基咔唑环结构聚芳醚酮的性能表征[J]. 应用化学, 2015, 032(004):379-385.

    WANG Feifei, WANG Zhipeng, WANG Honghua, et al. Properties of Poly(arylene ether ketone)s Containing N-Alkylcarbazole in Main Chains[J]. CHINESE JOURNAL OF APPLIED CHEMISTRY,2015,032(004):379-385(in Chinese).
  • [1] 丁梅杰, 张旭东, 魏智强, 黄尚攀, 姜金龙.  MnFe2O4/还原氧化石墨烯纳米复合材料的光学性能, 复合材料学报. 2020, 37(7): 1713-1720. doi: 10.13801/j.cnki.fhclxb.20191030.002
    [2] 顾升, 王雪, 徐国祺.  基于界面相互作用构建纳米纤维素-羧基化碳纳米管-石墨/聚吡咯柔性电极复合材料, 复合材料学报. 2020, 37(9): 2105-2116. doi: 10.13801/j.cnki.fhclxb.20200210.002
    [3] 黄露露, 张艳玲, 王挺, 吴礼光, 董春颖.  弱可见光催化活性La-TiO2-还原氧化石墨烯填充聚偏氟乙烯共混膜的构建, 复合材料学报. 2020, 37(): 1-10.
    [4] 李玮, 程先华.  稀土Ce接枝碳纳米管-碳纤维多尺度增强体对环氧树脂基复合材料界面性能的影响, 复合材料学报. 2020, 37(11): 1-9.
    [5] 马玉钦, 赵亚涛, 许威, 王杰, 陈义, 李开府.  高导热石墨烯-碳纤维混杂增强热致形状记忆复合材料研究进展, 复合材料学报. 2020, 37(10): 1-9. doi: 10.13801/j.cnki.fhclxb.20200622.003
    [6] 戴海军, 李嘉禄, 孙颖, 刘梁森, 陈利.  纬编双轴向织物/环氧树脂电加热复合材料电热及层间剪切性能, 复合材料学报. 2020, 37(8): 1997-2004. doi: 10.13801/j.cnki.fhclxb.20191129.001
    [7] 胡晓兰, 周川, 代少伟, 刘文军, 李伟东, 周玉敬, 邱虹, 白华.  氧化石墨烯改性不同表面性质的碳纤维/环氧树脂复合材料的微观形貌与动态热力学性能, 复合材料学报. 2020, 37(5): 1070-1080. doi: 10.13801/j.cnki.fhclxb.20191021.001
    [8] 李娜, 李晓屿, 刘丽, 汪路遥, 徐少东, 杨建成, 黄玉东, 王彩凤.  电泳沉积氧化石墨烯的碳纤维表面改性及其增强环氧树脂复合材料界面性能, 复合材料学报. 2020, 37(7): 1571-1580. doi: 10.13801/j.cnki.fhclxb.20191120.001
    [9] 齐业雄, 姜亚明, 李嘉禄.  芳纶捆绑对纬编双轴向多层衬纱织物增强环氧树脂复合材料层间性能的影响, 复合材料学报. 2020, 37(5): 1081-1087. doi: 10.13801/j.cnki.fhclxb.20190725.001
    [10] 汪蔚, 曹建达, 郑敏敏, 陈婷婷, 杨李懿.  BN表面沉积纳米Sn对BN/环氧树脂复合材料导热绝缘性能的影响, 复合材料学报. 2020, 37(7): 1547-1554. doi: 10.13801/j.cnki.fhclxb.20191113.005
    [11] 李果, 欧阳婷, 蒋朝, 陈云博.  碳纤维-纳米石墨片网络体导热增强石蜡相变储能复合材料的制备及表征, 复合材料学报. 2020, 37(5): 1130-1137. doi: 10.13801/j.cnki.fhclxb.20190911.002
    [12] 刘文军, 严建龙, 周川, 李伟东, 周玉敬, 邱虹, 白华, 胡晓兰.  氧化石墨烯改性碳纤维/环氧树脂复合材料的湿热性能及微观形貌, 复合材料学报. 2020, 37(): 1-12.
    [13] 胡晓兰, 刘文军, 余荣禄, 周川, 李伟东, 周玉敬, 刘刚, 益小苏.  含磷聚芳醚酮-双马来酰亚胺树脂(PAEK-P-BMI)及碳纤维/PAEK-P-BMI复合材料, 复合材料学报. 2020, 37(9): 2117-2124. doi: 10.13801/j.cnki.fhclxb.20200115.001
    [14] 黄朋朋, 芦刚, 严青松, 郭振华, 晏玉平.  陶瓷-尼龙复合纤维含量对石膏铸型性能和微观形貌的影响, 复合材料学报. 2020, 37(5): 1167-1174. doi: 10.13801/j.cnki.fhclxb.20190909.002
    [15] 李亮, 蔡再生.  磷氮复合阻燃环氧树脂的制备及其阻燃性能, 复合材料学报. 2020, 37(11): 1-11.
    [16] 吴少惠, 马荣锋, 吴平伟, 戴金辉.  空心玻璃微珠/环氧树脂固体浮力材料模压成型工艺及性能, 复合材料学报. 2020, 37(10): 1-8. doi: 10.13801/j.cnki.fhclxb.20200106.001
    [17] 孙琦, 周宏, 张航, 刘国隆.  改性凹凸棒土-氧化石墨烯/环氧树脂复合材料的力学性能和热电性能, 复合材料学报. 2020, 37(5): 1056-1062. doi: 10.13801/j.cnki.fhclxb.20190918.002
    [18] 张明艳, 王登辉, 吴子剑, 杨振华, 刘居.  改性碳纳米管/环氧树脂复合材料的介电性能, 复合材料学报. 2020, 37(6): 1285-1294. doi: 10.13801/j.cnki.fhclxb.20191105.001
    [19] 韩永森, 孙健, 张昕, 郭文敏, 李忠华.  微纳米SiC/环氧树脂复合材料的界面和非线性电导特性, 复合材料学报. 2020, 37(7): 1562-1570. doi: 10.13801/j.cnki.fhclxb.20191120.002
    [20] 孙颖颖, 周璐瑶, 韩宇, 崔柳.  气泡和气隙影响六方氮化硼/环氧树脂复合材料导热性能的有限元模拟, 复合材料学报. 2020, 37(10): 1-7. doi: 10.13801/j.cnki.fhclxb.20200111.004
  • 加载中
计量
  • 文章访问数:  180
  • HTML全文浏览量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-25
  • 录用日期:  2020-07-14
  • 网络出版日期:  2020-09-29

目录

    /

    返回文章
    返回