留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

木质素表面功能化MXene纳米片的制备及其对U(VI)的吸附性能

李仕友 乔记帅 杨宇彪 熊芷毓 王国华

李仕友, 乔记帅, 杨宇彪, 等. 木质素表面功能化MXene纳米片的制备及其对U(VI)的吸附性能[J]. 复合材料学报, 2024, 42(0): 1-15.
引用本文: 李仕友, 乔记帅, 杨宇彪, 等. 木质素表面功能化MXene纳米片的制备及其对U(VI)的吸附性能[J]. 复合材料学报, 2024, 42(0): 1-15.
Li Shiyou, Qiao Jishuai, Yang Yubiao, et al. Preparation of lignin surface-functionalized MXene nanosheets and its U(VI)adsorption properties[J]. Acta Materiae Compositae Sinica.
Citation: Li Shiyou, Qiao Jishuai, Yang Yubiao, et al. Preparation of lignin surface-functionalized MXene nanosheets and its U(VI)adsorption properties[J]. Acta Materiae Compositae Sinica.

木质素表面功能化MXene纳米片的制备及其对U(VI)的吸附性能

基金项目: 湖南省自然科学基金项目(2022JJ30490);国家自然科学基金项目(51904155)
详细信息
    通讯作者:

    王国华,博士,副教授,硕士生导师,研究方向为放射性污染治理与资源化 E-mail: wghcsu@163.com

  • 中图分类号: TB333

Preparation of lignin surface-functionalized MXene nanosheets and its U(VI)adsorption properties

Funds: The Natural Science Foundation of Hunan Province (2022JJ30490); The National Natural Science Foundation of China(51904155)
  • 摘要: 为了进一步改善MXene纳米材料对模拟放射性废水中U(Ⅵ)的吸附性能,利用天然资源酶水解木质素(EHL)作为生物表面活性剂对MXene进行表面功能化处理,采用SEM-EDS、XRD及FTIR对改性前后的材料进行了表征分析,并在吸附实验中探究了pH、温度、反应时间、干扰离子及不同初始U(Ⅵ)浓度等因素对除U(Ⅵ)效果的影响。结果表明,EHL阻止了MXene纳米片的聚集堆叠,并且引入了大量活性官能团,提高了EHL功能化MXene纳米片的吸附性能。在MXene与EHL的质量比为1∶5、投加量为0.1 g·L−1、pH为5、温度为303 K时,对U(VI)的最大吸附容量为231.95 mg·g−1。此外,吸附动力学和等温线分析表明,拟二阶动力学模型和Frendlich等温线模型能很好的拟合此吸附过程,热力学分析表明其吸附过程是自发吸热的。经历5次循环再生后,对U(VI)的去除率仍在80%以上。表征分析结果表明,MX/EHL与U(VI)之间相互作用机制包括离子交换、静电吸引以及与含氧官能团之间的络合作用。基于此研究,MX/EHL作为一种环境友好型吸附材料,对去除废水中的U(VI)具有巨大潜力。

     

  • 图  1  Ti3C2Tx(MX)/酶水解木质素(EHL)的主要制备步骤

    Figure  1.  The main preparation processes of Ti3C2Tx (MX)/ enzymatically hydrolyzed lignin (EHL)

    图  2  MX(a、b)和MX/EHL(c、d)的SEM图;MX(e)和MX/EHL(f)的EDS能谱

    Figure  2.  SEM images of MX(a、b) and MX/EHL(c、d);EDS patterns of MX(e) and MX/EHL(f)

    图  3  MAX(Ti3AlC2)、MX和MX/EHL的XRD光谱(a);MX和MX/EHL的N2吸脱附及孔径图(b)

    Figure  3.  XRD spectra of MAX(Ti3AlC2)、MX and MX/EHL(a); N2 adsorption-desorption and pore size of MX and MX/EHL (b)

    图  4  MX、EHL和MX/EHL吸附前后的FTIR图谱

    Figure  4.  FTIR spectra of MX、EHL and MX/EHL before and after adsorption

    图  5  不同配比MX/EHL吸附剂对U(VI) 的吸附效率对比

    Figure  5.  Comparison of adsorption efficiency of different ratios of MX/EHL adsorbents on U(VI)

    图  6  不同MX/EHL投加量对吸附U(VI) 的影响

    Figure  6.  Effect of different MX/EHL dosage on adsorption of U(VI)

    图  7  (a)不同pH值下U(VI) 的形态分布曲线图;(b)不同pH值对MX/EHL吸附U(VI)性能的影响

    Figure  7.  (a) Morphological distribution curves of U(VI) at different pH values; (b) Effect of different pH values on the adsorption performance of U(VI) by MX/EHL

    图  8  (a)接触时间对MX/EHL吸附U(VI)的影响;(b)拟一级动力学;(c)拟二级动力学;(d)颗粒内扩散模型

    Figure  8.  (a) Effect of contact time on U(VI) adsorption by MX/EHL; (b) Pseudo-first-order; (c) Pseudo-second-order; (d) Intraparticle diffusion model

    图  9  MX/EHL吸附U(VI)的Langmuir(a)、Freundlich(b)和Dubinin-Radushkevich(c)等温吸附模型拟合曲线;(d)lnK0与1/T的线性拟合

    Figure  9.  Fitting curve of Langmuir(a)、 Freundlich (b) and Dubinin‒Radushkevich (c) isothermal adsorption model of U(VI) adsorption by MX/EHL; (d) Linear fit of lnK0 versus 1/T

    图  10  不同种类竞争离子对MX/EHL吸附U(VI)的影响

    Figure  10.  effect of different competitive ions on adsorption of U(VI) on MX/EHL

    图  11  MX/EHL吸附剂循环再生试验

    Figure  11.  MX/EHL adsorbent cycle regeneration experiment

    图  12  (a)吸附前后MX/EHL全谱图;(b)U 4 f光谱图;(c、d)O 1 s光谱图;(e、f)C 1 s光谱图;

    Figure  12.  (a)full spectrum of MX/EHL before and after adsorption; (b) U 4 f spectrum; (c、d) O 1 s spectrum; (e、f) C 1 s spectrum

    表  1  MX和MX/EHL的孔隙结构参数

    Table  1.   Pore structure parameters of MX and MX/EHL

    MaterialSurface area/
    (m2·g−1)
    Pore volume/
    (cm3·g−1)
    Pore diameter/
    nm
    MX3.82970.010010.4628
    MX/EHL8.77510.045520.7320
    下载: 导出CSV

    表  2  MX/EHL对U(VI)的吸附动力学参数

    Table  2.   The adsorption kinetic parameters of U(VI) on MX/EHL

    Kinetic model Name of sample MX MX/EHL(1∶4) MX/EHL(1∶5)
    qe,exp/(mg·g−1) 35.22 46.92 48.24
    Pseudo-first-order k1/min−1 0.017 0.017 0.018
    qe,cal/(mg·g−1) 3.487 2.737 2.502
    R2 0.882 0.949 0.930
    Pseudo-second-order k2/min−1 0.021 0.027 0.030
    qe,cal/(mg·g−1) 35.51 47.13 48.43
    R2 0.999 0.999 0.999
    Intraparticle diffusion kp1/(mg·(g·min0.5)−1) 0.688 0.282 0.338
    C1 29.782 43.819 45.002
    R12 0.973 0.958 0.981
    Intraparticle diffusion kp2/(mg·(g·min0.5)−1) 0.406 0.324 0.303
    C2 31.266 43.568 45.243
    R22 0.989 0.986 0.994
    kp3/(mg·(g·min0.5)−1) 0.015 0.058 0.035
    C3 35.029 46.175 47.794
    R32 0.804 0.653 0.615
    Notes: qe,exp is the actual adsorption capacity at adsorption equilibrium; qe,cal is the calculated adsorption capacity at adsorption equilibrium; k1 and k2 are the adsorption rate constants of the pseudo-first and pseudo-second, respectively ; R2 is the correlation coefficient; kp1, kp2, kp3 are the adsorption rate constants of intraparticle diffusion.
    下载: 导出CSV

    表  3  Langmuir、Freundlich和Dubinin‒Radushkevich吸附等温线模型的相关参数

    Table  3.   Parameters associated with Langmuir, Freundlich and Dubinin-Radushkevich adsorption isotherm models

    T/K Langmuir Freundlich Dubinin‒Radushkevich
    qmax/(mg·g−1) KL/(L∙mg−1) R2 KF 1/n R2 qDR E R2
    293 K 205.493 0.164 0.890 48.175 0.399 0.982 115.99 1.879 0.554
    298 K 217.057 0.221 0.925 58.802 0.378 0.989 129.09 2.077 0.607
    303 K 231.947 0.251 0.924 65.565 0.379 0.997 138.33 2.337 0.627
    Notes: qmax is the maximum adsorption capacity; KL is the Langmuir adsorption equilibrium constant; KF and n are the constants that are related to the adsorption capacity and the adsorption intensity, respectively; R is the universal gas constant (8.312 J·mol−1·K−1), T is the temperature (K); E is the average free energy of adsorption.
    下载: 导出CSV

    表  5  不同吸附剂对U(VI)的吸附去除效果对比

    Table  5.   Comparison of adsorption and removal effects of different adsorbents on U(VI)

    Adsorbent pH T/K qmax/(mg·g−1) Reference
    C-TC 5 308 165.43 [20]
    MXene/SA 4 298 126.82 [34]
    C-TC-CS 6 313 141.96 [36]
    PANI/Ti3C2Tx 5 298 102.8 [37]
    PAO/Ti3C2Tx 4 298 98.04 [38]
    Ti3C2-AO-PA 8.3 298 81.1 [47]
    MX/EHL 5 303 231.95 This work
    Notes: C-TC is Chloroacetic acid modified-Ti3C2Tx; MXene/SA is MXene composite sodium alginate gel microsphere; C-TC-CS is chloroacetic acid-modified MXene-CS gel microspheres; PANI/Ti3C2Tx is polyaniline modified Mxene composites; PAO/Ti3C2Tx is Polyamidoxime functionalized MXene composite; Ti3C2-AO-PA is polyamide enhanced amidoxime-functionalized Ti3C2 nanosheet; T is the reaction temperature; qmax is the maximum adsorption capacity.
    下载: 导出CSV

    表  4  MX/EHL吸附U(VI)的热力学参数

    Table  4.   Thermodynamic parameters of MX/EHL adsorption of U(VI)

    T/K lnK0 ΔG0/(kJ·mol−1) ΔH0/(kJ·mol−1) ΔS0/(J·(mol·K)−1)
    293 K 4.69 −11.43 38.89 175.26
    298 K 5.00 −12.39
    303 K 5.23 −13.18
    Notes: T is the thermodynamic temperature; K0 is the equilibrium constant at different temperatures; ΔH0 is the standard enthalpy change; ΔG0 is the standard free energy change; ΔS0 is the standard entropy change.
    下载: 导出CSV
  • [1] YUAN D, ZHANG S, XIANG Z, et al. Highly Efficient Removal of Uranium from Aqueous Solution Using a Magnetic Adsorbent Bearing Phosphine Oxide Ligand: A Combined Experimental and Density Functional Theory Study[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 9619-27.
    [2] HUANG S, JIANG S, PANG H, et al. Dual functional nanocomposites of magnetic MnFe2O4 and fluorescent carbon dots for efficient U(VI) removal[J]. Chemical Engineering Journal, 2019, 368: 941-50. doi: 10.1016/j.cej.2019.03.015
    [3] He Z, Huang D, Yue G, et al. Ca2+ induced 3D porous MXene gel for continuous removal of phosphate and uranium[J]. Applied Surface Science, 2021, 570: 150804. doi: 10.1016/j.apsusc.2021.150804
    [4] ZHANG S, YUAN D, ZHANG Q, et al. Highly efficient removal of uranium from highly acidic media achieved using a phosphine oxide and amino functionalized superparamagnetic composite polymer adsorbent[J]. Journal of Materials Chemistry A, 2020, 8(21): 10925-34. doi: 10.1039/D0TA01633K
    [5] ZAHERI P, DAVARKHAH R. Selective separation of uranium from sulfuric acid media using a polymer inclusion membrane containing alamine336[J]. Chem-ical Papers, 2020, 74(8): 2573-81. doi: 10.1007/s11696-019-01029-9
    [6] ORREGO P, HERNáNDEZ J, REYES A. Uranium and molybdenum recovery from copper leaching solutions using ion exchange[J]. Hydrometallurgy, 2019, 184: 116-22. doi: 10.1016/j.hydromet.2018.12.021
    [7] CHEN J, HUANG Q, HUANG H, et al. Recent progress and advances in the environmental applications of MXene related materials[J]. Nanoscale, 2020, 12(6): 3574-92. doi: 10.1039/C9NR08542D
    [8] YU H, WANG Y, JING Y, et al. Surface Modified MXene-Based Nanocomposites for Electrochemical Energy Conversion and Storage[J]. Small, 2019, 15(25): 1901503. doi: 10.1002/smll.201901503
    [9] ZHOU Z, LIU J, ZHANG X, et al. Ultrathin MXene/calcium alginate aerogel film for highper-formance electromagnetic interference shielding[J]. Advanced Materials Interfaces, 2019, 6(6): 1802040. doi: 10.1002/admi.201802040
    [10] SINHA A, DHANJAI, ZHAO H, et al. MXene: An emerging material for sensing and biosensing[J]. TrAC Trends in Analytical Chemistry, 2018, 105: 424-35. doi: 10.1016/j.trac.2018.05.021
    [11] ZHANG Y, WANG L, ZHANG N, et al. Adsorptive environmental applications of MXene nanomaterials: a review[J]. RSC Adv, 2018, 8(36): 19895-905. doi: 10.1039/C8RA03077D
    [12] YING Y, LIU Y, WANG X, et al. Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium(VI) from water[J]. ACS Appl Mater Interfaces, 2015, 7(3): 1795-803. doi: 10.1021/am5074722
    [13] SHAHZAD A, RASOOL K, MIRAN W, et al. Two-Dimensional Ti3C2Tx MXene Nanosheets for Efficient Copper Removal from Water[J]. ACS Sustainable Che-mistry & Engineering, 2017, 5(12): 11481-8.
    [14] ZHANG P, WANG L, DU K, et al. Effective removal of U(VI) and Eu(III) by carboxyl functionalized MXene nanosheets[J]. J Hazard Mater, 2020, 396: 122731. doi: 10.1016/j.jhazmat.2020.122731
    [15] ZHANG F, LI S, ZHANG Q, et al. Adsorption of different types of surfactants on graphene oxide[J]. Journal of Molecular Liquids, 2019, 276: 338-46. doi: 10.1016/j.molliq.2018.12.009
    [16] MENG Y, LU J, CHENG Y, et al. Lignin-based hydrogels: A review of preparation, properties, and application[J]. Int J Biol Macromol, 2019, 135: 1006-19. doi: 10.1016/j.ijbiomac.2019.05.198
    [17] LUO R, ZHANG W, HU X, et al. Preparation of sodium ligninsulfonate functionalized MXene using hexach-lorocyclotriphosphazene as linkage and its adsorption applications[J]. Applied Surface Science, 2022, 602: 154197 doi: 10.1016/j.apsusc.2022.154197
    [18] WANG S, LIU Y, Lü Q-F, et al. Facile preparation of biosurfactant-functionalized Ti2CTx MXene nanosheets with an enhanced adsorption performance for Pb(II) ions[J]. Journal of Molecular Liquids, 2020, 297: 111810. doi: 10.1016/j.molliq.2019.111810
    [19] ZHANG K N, WANG C Z, LU Q F, et al. Enzymatic hydrolysis lignin functionalized Ti(3)C(2)T(x) nanosh-eets for effective removal of MB and Cu(2+) ions[J]. Int J Biol Macromol, 2022, 209(Pt A): 680-91.
    [20] XIE L, YAN J, LIU Z, et al. Synthesis of a Two-Dimensional MXene Modified by Chloroacetic Acid and Its Adsorption of Uranium[J]. ChemistrySelect, 2022, 7(1): e202103583. doi: 10.1002/slct.202103583
    [21] Lü Q-F, LUO J-J, LIN T-T, et al. Novel Lignin–Poly(N-methylaniline) Composite Sorbent for Silver Ion Removal and Recovery[J]. ACS Sustainable Chemistry & Enginee-ring, 2013, 2(3): 465-71.
    [22] HU Y, ZHUO H, LUO Q, et al. Biomass polymerassisted fabrication of aerogels from MXenes with ultrahigh com-pression elasticity and pressure sensitivity[J]. Journal of Materials Chemistry A, 2019, 7(17): 10273-81. doi: 10.1039/C9TA01448A
    [23] SALEH T A. Carbon nanotube-incorporated alumina as a support for MoNi catalysts for the efficient hydrode-sulfurization of thiophenes[J]. Chemical Engineering Journal, 2021, 404: 126987. doi: 10.1016/j.cej.2020.126987
    [24] WANG Q-M, LIU Z-H, Lü Q-F. Lignin modified Ti3C2Tx assisted construction of functionalized interface for separation of oil/water mixture and dye wastewater[J]. Colloids and Surfaces A:Physicochemical and Engine-ering Aspects, 2023, 656: 130371.
    [25] DING L, WEI Y, WANG Y, et al. A Two-Dimensional Lamellar Membrane: MXene Nanosheet Stacks[J]. Angew Chem Int Ed Engl, 2017, 56(7): 1825-9. doi: 10.1002/anie.201609306
    [26] HAN R, MA X, XIE Y, et al. Preparation of a new 2D MXene/PES composite membrane with excellent hydrophilicity and high flux[J]. RSC Advances, 2017, 7(89): 56204-10. doi: 10.1039/C7RA10318B
    [27] LI S, WANG L, PENG J, et al. Efficient thorium(IV) removal by two-dimensional Ti2CTx MXene from aqueous solution[J]. Chemical Engineering Journal, 2019, 366: 192-9. doi: 10.1016/j.cej.2019.02.056
    [28] GUO Y, GONG Z, LI C, et al. Efficient removal of uranium (VI) by 3D hierarchical Mg/Fe-LDH supported nanoscale hydroxyapatite: A synthetic experimental and mechanism studies[J]. Chemical Engineering Journal, 2020, 392: 123682. doi: 10.1016/j.cej.2019.123682
    [29] DONG X, WANG Y, JIA M, et al. Sustainable and scalable insitu synthesis of hydrochar-wrapped Ti3AlC2-derived nanofibers as adsorbents to remove heavy metals[J]. Bioresour Technol, 2019, 282: 222-7. doi: 10.1016/j.biortech.2019.03.010
    [30] LEVITT A S, ALHABEB M, HATTER C B, et al. Electrospun MXene/carbon nanofibers as supercapacitor electrodes[J]. Journal of Materials Chemistry A, 2019, 7(1): 269-77. doi: 10.1039/C8TA09810G
    [31] MA Z, LI S, FANG G, et al. Modification of chemical reactivity of enzymatic hydrolysis lignin by ultrasound treatment in dilute alkaline solutions[J]. Int J Biol Macromol, 2016, 93(Pt A): 1279-84.
    [32] AN L, WANG G, JIA H, et al. Fractionation of enzymatic hydrolysis lignin by sequential extraction for enhancing antioxidant performance[J]. Int J Biol Macromol, 2017, 99: 674-81. doi: 10.1016/j.ijbiomac.2017.03.015
    [33] KONG L, RUAN Y, ZHENG Q, et al. Uranium extraction using hydroxyapatite recovered from phosphorus contain-ing wastewater[J]. J Hazard Mater, 2020, 382: 120784. doi: 10.1016/j.jhazmat.2019.120784
    [34] 李仕友, 胡俊毅, 贺俊钦, et al. MXene/SA凝胶微球的制备及对U(Ⅵ)的吸附性能[J]. 复合材料学报, 2022, 39(10): 4868-78.

    LI Shiyou, HU Junyi, HE Junqin, et al. Preparation of MXene/SA gel microspheres and its adsorption perfor-mance for U(VI)[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4868-4878(in Chinese).
    [35] REN X, WANG S, YANG S, et al. Influence of contact time, pH, soil humic/fulvic acids, ionic strength and temperature on sorption of U(VI) onto MX-80 bentonite[J]. Journal of Radioanalytical and Nuclear Chemistry, 2009, 283(1): 253-9.
    [36] LI S, HE J, WANG Y, et al. Adsorption characteristics of U(VI) in aqueous solution by chloroacetic acid-modified MXene-CS gel microspheres[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023, 674: 131983. doi: 10.1016/j.colsurfa.2023.131983
    [37] 顾鹏程, 宋爽, 张塞, et al. 聚苯胺改性Mxene复合材料对U(VI)的高效富集及机理研究[J]. 化学学报, 2018, 76(09): 701-8.

    Gu Pengcheng, Song Shuang, Zhang Sai, et al. Enrichment of U(VI) on Polyaniline Modified Mxene Composites Studied by Batch Experiment and Mechan-ism Investigation[J]. Acta Chim. Sinica, 2018, 76(9): 701-708(in Chinese).
    [38] ZHOU Y, HAO H-X, DONG T-H, et al. Efficient enrichment of U(VI) by two-dimensional layered transi-tion metal carbide composite[J]. Radiochimica Acta, 2022, 110(5): 311-22. doi: 10.1515/ract-2021-1130
    [39] SHAHZAD A, NAWAZ M, MOZTAHIDA M, et al. Ti3C2Tx MXene core-shell spheres for ultrahigh removal of mercuric ions[J]. Chemical Engineering Journal, 2019, 368: 400-8. doi: 10.1016/j.cej.2019.02.160
    [40] FENG X, YU Z, LONG R, et al. Self-assembling 2D/2D (MXene/LDH) materials achieve ultra-high adsorption of heavy metals Ni2+ through terminal group modification[J]. Separation and Puri-fication Technology, 2020, 253: 117525. doi: 10.1016/j.seppur.2020.117525
    [41] ZAHAKIFAR F, KESHTKAR A R, TALEBI M. Performance evaluation of sodium alginate/polyvinyl alcohol/poly-ethylene oxide/ZSM5 zeolite hybrid adsorb-ent for ion uptake from aqueous solutions: a case study of thorium (IV)[J]. Journal of Radioanalytical and Nuclear Chemistry, 2020, 327(1): 65-72.
    [42] WU J, ZHENG Z, ZHU K, et al. Adsorption performance and mechanism of g-C3N4/UiO-66 composite for U(VI) from aqueous solution[J]. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331(1): 469-81. doi: 10.1007/s10967-021-08116-w
    [43] WU L, LIN X, ZHOU X, et al. Removal of uranium and fluorine from wastewater by double-functional microsph-ere adsor-bent of SA/CMC loaded with calcium and aluminum[J]. Applied Surface Science, 2016, 384: 466-79. doi: 10.1016/j.apsusc.2016.05.056
    [44] 张鹏丽, 武莉娅, 杨宗政, et al. MXene改性材料的制备及其吸附除Sr2+性能[J]. 复合材料学报, 2023, 40(10): 5678-91.

    ZHANG Pengli, WU Liya, YANG Zongzheng, et al. Preparation of modified MXene material and its adsorption performance for Sr2+[J]. Acta Materiae Comp-ositae Sinica, 2023, 40(10): 5678-5691(in Chinese).
    [45] WANG L, SONG H, YUAN L, et al. Efficient U(VI) Reduction and Sequestra-tion by Ti2CTx MXene[J]. Environ Sci Technol, 2018, 52(18): 10748-56. doi: 10.1021/acs.est.8b03711
    [46] Zhang P, Wang L, Huang Z, et al. Aryl diazonium-assisted amidoximation of MXene for boosting water stability and uranyl sequestration via electrochemical sorption[J]. ACS applied materials & interfaces, 2020, 12(13): 15579-15587.
    [47] ZHANG D, LIU L, ZHAO B, et al. Highly efficient extraction of uranium from seawater by polyamide and amidoxime cofunctionalized MXene[J]. Environ Pollut, 2023, 317: 120826. doi: 10.1016/j.envpol.2022.120826
    [48] HALIM J, COOK K M, NAGUIB M, et al. X-ray photoelectron spectroscopy of select multilayered tra-nsition metal carbides (MXenes)[J]. Applied Surface Science, 2016, 362: 406-17. doi: 10.1016/j.apsusc.2015.11.089
    [49] RETHINASABAPATHY M, HWANG S K, KANG S M, et al. Amino-functionalized POSS nanocage-intercalated titanium carbide (Ti3C2Tx) MXene stacks for eff-icient cesium and strontium radionuclide sequestration[J]. J Hazard Mater, 2021, 418: 126315. doi: 10.1016/j.jhazmat.2021.126315
    [50] MISHRA V, SURESHKUMAR M K, GUPTA N, et al. Study on Sorption Characteristics of Uranium onto Biochar Derived from Eucalyptus Wood[J]. Water, Air, & Soil Pollution, 2017, 228: 1-14.
  • 加载中
计量
  • 文章访问数:  140
  • HTML全文浏览量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-16
  • 修回日期:  2023-12-20
  • 录用日期:  2023-12-23
  • 网络出版日期:  2024-01-18

目录

    /

    返回文章
    返回