留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2.5D机织SiCf/SiC复合材料制备与吸波性能

赵马娟 王晓猛 王岭 邱海鹏 张典堂

赵马娟, 王晓猛, 王岭, 等. 2.5D机织SiCf/SiC复合材料制备与吸波性能[J]. 复合材料学报, 2024, 41(7): 3634-3646.
引用本文: 赵马娟, 王晓猛, 王岭, 等. 2.5D机织SiCf/SiC复合材料制备与吸波性能[J]. 复合材料学报, 2024, 41(7): 3634-3646.
ZHAO Majuan, WANG Xiaomeng, WANG Ling, et al. Preparation and microwave absorbing properties of 2.5D woven SiCf/SiC composites[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3634-3646.
Citation: ZHAO Majuan, WANG Xiaomeng, WANG Ling, et al. Preparation and microwave absorbing properties of 2.5D woven SiCf/SiC composites[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3634-3646.

2.5D机织SiCf/SiC复合材料制备与吸波性能

基金项目: 173重点项目(2022-JCJQ-ZD-067-11)
详细信息
    通讯作者:

    张典堂,博士,研究员,研究方向为先进纺织复合材料设计及制造 E-mail: zhangdiantang@jiangnan.edu.cn

  • 中图分类号: TB332

Preparation and microwave absorbing properties of 2.5D woven SiCf/SiC composites

Funds: 173 Key Project of China (2022-JCJQ-ZD-067-11)
  • 摘要: 为满足高温吸波结构复合材料要求,选用SiC纤维,设计并制备了2.5D机织SiCf/SiC复合材料,采用实验与仿真相结合的方法研究了吸波性能。利用弓形法开展了反射损耗测试,采用X射线计算机断层扫描(Micro-CT)技术提取材料几何结构参数,建立了全厚度细观模型,在CST电磁仿真软件上模拟计算了材料的反射损耗,并与实验结果进行对比分析。通过等效电磁参数理论和场分布图分析了吸波机制,并研究了几何结构参数、电磁参数、电磁波电场极化方向和入射角度对材料吸波特性的影响规律。实验结果表明,在1-18 GHz频率范围内,本文所制备的2.5D机织SiCf/SiC复合材料具有3 GHz的有效吸波带宽,在吸收峰9.3 GHz处,最大反射损耗达到−17 dB,这与仿真结果基本一致。该复合材料主要通过电损耗的方式吸收电磁波,其良好的吸波性能是结构设计和材料特性协同作用的结果,材料整体厚度和纤维介电常数是影响2.5D机织SiCf/SiC复合材料吸波性能的关键因素。

     

  • 图  1  先驱体浸渍裂解(PIP)法制备2.5D机织SiCf/SiC复合材料工艺流程图

    Figure  1.  Process flow chart of 2.5D woven SiCf/SiC composites prepared by precursor dip cleavage (PIP)

    图  2  (a)SiC纤维预制体;(b)带BN界面层的SiC纤维预制体;(c) 2.5D机织SiCf/SiC复合材料粗坯;(d) 2.5D机织SiCf/SiC复合材料样件

    Figure  2.  (a) SiC fiber preform; (b) SiC fiber preform with BN interface layer; (c) Rough blank of 2.5D woven SiCf/SiC Composites; (d) Sample of 2.5D woven SiCf/SiC Composites

    图  3  弓形法测2.5D机织SiCf/SiC复合材料反射损耗系统示意图

    Figure  3.  System schematic diagram of measuring reflection loss of 2.5D woven SiCf/SiC composites by bow method

    图  4  2.5D机织SiCf/SiC复合材料的Micro-CT扫描结果: (a)经向截面扫描形态; (b)纬向截面扫描形态; (c)椭圆截面几何参数; (d)扁六边形截面几何参数

    Figure  4.  Micro CT scanning results of 2.5D woven SiCf/SiC composites:(a) Scanning morphology of warp cross-section; (b) Scanning morphology of weft cross-section; (c) Geometric parameters of ellipse cross-section; (d) Geometric parameters of flat hexagonal cross-section

    图  5  2.5D机织SiCf/SiC复合材料模型:(a)以椭圆为纱线截面;(b)以扁六边形为纱线截面

    Figure  5.  2.5D woven SiCf/SiC composites model: (a) the cross-section of yarn is ellipse; (b) the cross-section of yarn is flat hexagonal

    图  6  CST 微波工作室仿真流程图

    Figure  6.  Simulation flow chart of CST microwave studio

    图  7  2.5D机织SiCf/SiC复合材料反射损耗的仿真结果与实验结果对比

    Figure  7.  Comparison between simulation results and experimental results of reflection loss of 2.5D woven SiCf/SiC composites model

    图  8  2.5D机织SiCf/SiC复合材料的等效电磁参数曲线

    Figure  8.  Curve of equivalent electromagnetic parameters of 2.5D woven SiCf/SiC composites

    图  9  2.5D机织SiCf/SiC复合材料的场分布图:(a)电场分布图;(b)磁场分布图;(c)表面电流密度分布图;(d)能量损耗密度分布图

    Figure  9.  Field distribution map of 2.5D woven SiCf/SiC composites:(a)E-Field distribution map;(b)H-Field distribution map;(c)Current density distribution map;(d)Power loss density distribution map

    图  10  2.5D机织SiCf/SiC复合材料的吸波机制示意图

    Figure  10.  Schematic diagram of microwave absorbing mechanism of 2.5D woven SiCf/SiC composites

    图  11  材料几何特性对2.5D机织SiCf/SiC复合材料吸波性能的影响:(a)厚度;(b)纬密;(c)纤维层数

    Figure  11.  The influence of geometric properties of materials on microwave absorbing properties of 2.5D woven SiCf/SiC composites; (a) thickness;(b) weft density ; (c) number of fiber layers

    图  12  (a)纤维介电常数实部对吸波性能的影响;(b)纤维介电损耗角正切对吸波性能的影响;(c)材料厚度为3 mm时纤维混杂层数对吸波性能的影响;(d)材料厚度为6 mm时纤维混杂层数对吸波性能的影响

    Figure  12.  (a) The influence of the fiber real part of permittivity on the absorption performance; (b) The influence of fiber dielectric loss Angle tangent on the absorption performance; (c) The influence of fiber hybrid layers on the absorption properties when the material thickness is 3 mm; (d) The influence of fiber hybrid layers on the absorption properties of 6 mm material thickness

    图  13  极化角度(a)和入射角度(b)对2.5D机织SiCf/SiC复合材料吸波性能的影响

    Figure  13.  The influence of polarization Angle (a) and incidence Angle (b) on the microwave absorption properties of 2.5D woven SiCf/SiC composites

    表  1  2.5D机织SiCf/SiC复合材料规格参数

    Table  1.   Specification parameters of 2.5D woven SiCf/SiC composites

    Prefabricated structure dimension/
    mm
    Warp density/
    (yarn·cm−1)
    Weft density/
    (yarn·cm−1)
    Yarn fineness/Tex Number of
    layers
    Volume
    fraction/%
    2.5D woven Angle interlock 40*40*3 9 3.5 185 8 45
    下载: 导出CSV
  • [1] 邢原铭, 杨涛, 王恩会等. SiC复合吸波材料的研究进展[J]. 复合材料学报, 1-12.

    XING Yuanming, YANG Tao WANG Enhui. Research progress of SiC composite microwave absorbing materials[J]. Acta Materiae Compositae Sinica, 1-12(in Chinese).
    [2] FU Z, PANG A, LUO H, et al. Research progress of ceramic matrix composites for high temperature stealth technology based on multi-scale collaborative design[J]. Journal of Materials Research and Technology, 2022, 18-24
    [3] 周旺. 2D-SiCf/SiC耐高温结构吸波材料力学性能研究[D]. 国防科学技术大学, 2008.

    ZHOU Wang. Mechanical Properties of 2D-SiCf/SiC High-temperature Structural Absorbing Materials[D]. National University of Defense Technology, 2008(in Chinese).
    [4] 孟庆聪. 碳化硅陶瓷复合材料的制备及其吸波性能研究[D]. 天津大学, 2016.

    MENG Qincong. Studies on the Preparation and Microwave Absorbing Properties of Vitrified Bonded SiC Composites[D]. Tianjin University, 2016(in Chinese).
    [5] 胡悦, 黄大庆, 史有强, 张昳, 何山, 丁鹤雁. 耐高温陶瓷基结构吸波复合材料研究进展[J]. 航空材料学报, 2019, 39(05): 1-12(in Chinese). doi: 10.11868/j.issn.1005-5053.2019.000139

    HU Yue, HUANG Daqing, SHI Youqiang, ZHANG Yi, HE Shan, DING Heyan. Research progress of high temperature resistant ceramic based structural wave absorbing composites[J]. Journal of Aeronautical Materials, 2019, 39(05): 1-12. doi: 10.11868/j.issn.1005-5053.2019.000139
    [6] 刘海韬. 夹层结构SiCf/SiC雷达吸波材料设计、制备及性能研究[D]. 国防科学技术大学, 2010.

    LIU Haitao. Design, preparation and properties of the SiCf/SiC radar absorbing materials with sandwhich structures[D]. National University of Defense Technology, 2010(in Chinese).
    [7] 刘文迪, 吕丽华. 三维机织吸波复合材料的研究进展[J]. 棉纺织技术, 2020, 48(10): 81-84. doi: 10.3969/j.issn.1001-7415.2020.10.019

    LIU Wendi, LV Lihua. Research progress of three-dimensional woven Microwave Absorbing Composites[J]. Cotton Textile Technology, 2020, 48(10): 81-84(in Chinese). doi: 10.3969/j.issn.1001-7415.2020.10.019
    [8] 穆阳. SiCf/SiC高温结构吸波复合材料的制备及性能研究[D]. 西北工业大学, 2016.

    MU Yang. Preparation and Properties of SiCf/SiC High-temperature Structural Microwave Absorbing Composites[D]. Northwestern Polytechnical University, 2016(in Chinese).
    [9] 樊威, 孟家光, 孙润军, 刘天骄, 宋文, 熊越. 混杂纤维增强结构隐身复合材料研究进展[J]. 纺织导报, 2017, (01): 66-68.

    FAN Wei, MENG Jiaguang, SUN Runjun, et al. Development in the Research of Hybrid Fiber Reinforced Structural Absorbing Composites[J]. China Textile Leader, 2017, (01): 66-68(in Chinese).
    [10] 戴海军, 李嘉禄, 孙颖, 等. 纬编双轴向织物/环氧树脂电加热复合材料电热及层间剪切性能[J]. 复合材料学报, 2020, 37(8): 1997-2004.

    DAI Haijun, LI Jialu, SUN Ying, et al. Electrothermal and interlaminar shear properties of weft knitted biaxial fabric/epoxy resin electrically heated Composites[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1997-2004(in Chinese).
    [11] MU Y, ZHOU W, HU Y, et al. Enhanced microwave absorbing properties of 2.5 D SiCf/SiC composites fabricated by a modified precursor infiltration and pyrolysis process[J]. Journal of Alloys and Compounds, 2015, 637: 261-266. doi: 10.1016/j.jallcom.2015.03.031
    [12] HAN T, LUO R, CUI G, et al. Effect of fibre directionality on the microwave absorption properties of 3D braided SiCf/SiC composites[J]. Ceramics International, 2019, 45(6): 7797-7803. doi: 10.1016/j.ceramint.2019.01.085
    [13] 吕丽华, 王荣蕊, 刘文迪等. 蜂窝状三维整体机织结构型吸波复合材料的设计、制备与性能[J]. 复合材料学报, 2023, 40(03): 1477-1483.

    LV Lihua, WANG Rongrui, LIU Wendi. et al. Design, preparation and properties of honeycomb 3D integral woven structure microwave absorbing composites[J]. Acta Materiae Compositae Sinica, 2023, 40(03): 1477-1483(in Chinese).
    [14] ZHANG H, ZHOU X, GAO Y, et al. Microwave absorption and bending properties of three-dimensional gradient honeycomb woven composites[J]. Polymer Composites, 2023, 44(2): 1201-1212. doi: 10.1002/pc.27164
    [15] CHEN N , WEI S , SHI B , et al. Investigating the electromagnetic wave-absorbing capacity and mechanical properties of flexible radar-absorbing knitted compound materials[J]. Journal of Industrial Textiles, 2021, 51(3): 343-361.
    [16] 李丹丹. 2.5D碳/环氧复合材料电磁波传输性能研究[D]. 天津工业大学, 2016.

    LI Dandan. Study on electromagnetic wave transmission performance of 2.5D carbon/epoxy composites[D]. Tianjin Polytechnic University, 2016(in Chinese).
    [17] XIA Q, HAN Z, ZHANG Z, et al. High temperature microwave absorbing materials[J]. Journal of Materials Chemistry C, 2023, 54-59.
    [18] DU Z, LIANG J, CAI T, et al. Ultra-light planar meta-absorber with wideband and full-polarization properties[J]. Optics Express, 2021, 29(5): 6434-6444. doi: 10.1364/OE.416245
    [19] 鞠文静, 周忠元, 蒋全兴等. 基于有限积分法的电磁兼容吸波材料反射率的建模仿真[J]. 东南大学学报(自然科学版), 2015, 45(03): 474-477. doi: 10.3969/j.issn.1001-0505.2015.03.011

    JU Wenjing, ZHOU Zhongyuan, JIANG Quanxin. et al. FIT-based simulation of reflectivity of absorbing materials for electromagnetic compatibility[J]. Journal of Southeast University (Natural Science Edition), 2015, 45(03): 474-477(in Chinese). doi: 10.3969/j.issn.1001-0505.2015.03.011
    [20] 苏钦城, 赵晓明, 李卫斌等. 基于有限积分法的机织物电磁屏蔽效能仿真分析[J]. 纺织学报, 2016, 37(02): 155-160.

    SU Qincheng, ZHAO Xiaoming, LI Weibin. et al. Simulation analysis of woven fabric electromagnetic shielding effectiveness using finite integration technique[J]. Journal of Textile Research, 2016, 37(02): 155-160(in Chinese).
    [21] 杨飙. 纤维复合微波吸收材料电磁建模与分析[D]. 华中科技大学, 2015.

    YANG Biao. Analysis and Electromagnetic Modeling of the Fiber Reinforced Microwave Absorbing Composites[D]. Huazhong University of Science and Technology, 2015(in Chinese).
    [22] 孙娜, 徐阳. 基于法兰同轴测试原理的织物屏蔽效能仿真[J]. 丝绸, 2023, 60(05): 52-58. doi: 10.3969/j.issn.1001-7003.2023.05.007

    SUN Na, XU Yang. Simulation of Electromagnetic Shielding Effectiveness of Fabrics based on the Principle of Flange Coaxial Method Testing[J]. Journal of Silk, 2023, 60(05): 52-58(in Chinese). doi: 10.3969/j.issn.1001-7003.2023.05.007
    [23] YIN J, MA W, GAO Z, et al. A Structural Design Method of 3D Electromagnetic Wave-Absorbing Woven Fabrics. Polymers 2022, 14(13), 2635.
    [24] WANG R, LIU W, ZHOU X, et al. Electromagnetic wave absorption and bending properties of double-layer honeycomb 3D woven composites: experiment and simulation[J]. The Journal of The Textile Institute, 2023: 1-11.
    [25] 刘海韬, 程海峰, 王军, 唐耿平. SiCf/SiC复合材料界面相研究进展[J]. 材料导报, 2010, 24(01): 10-14+30.

    LIU Haitao, CHENG Haifeng, WANG Jun, TANG Genping. Study on the Interphase of the Conti nuous SiC Fiber Reinforced SiC Composites[J]. Materials Reports, 2010, 24(01): 10-14+30(in Chinese).
    [26] 国防科学技术工业委员会. 雷达吸波材料反射率测试方法: GJB 2038-94[S]. 北京: 中国标准出版社, 1994.

    Commission of Science, Technology and Industry for National Defense (COSTIND) commission. Methods for measurement of reflectivity of radar absorbing material: GJB 2038-94 [S]. Beijing: China Standard Press, 1994 (in Chinese).
    [27] YAO H, YANG J, LI H, et al. Optimal design of multilayer radar absorbing materials: a simulation-optimization approach[J]. Advanced Composites and Hybrid Materials, 2023, 6(1): 43. doi: 10.1007/s42114-023-00626-3
    [28] SMITH D R , VIER D C, KOSCHNY Th, et al . Electromagnetic parameter retrieval from inhomogeneous metamaterials[J]. Physical review. E, 2005, 71(3 Pt 2B): 036617.
    [29] CHEN Z , ZHANG Y , WANG Z . Bioinspired moth-eye multi-mechanism composite ultra-wideband microwave absorber based on the graphite powder[J]. Carbon: An International Journal Sponsored by the American Carbon Society, 2023.
    [30] 苏钦城. 电磁波在织物中传播的正反演仿真研究[D]. 天津工业大学, 2016.

    SU Qincheng. Forward and inverse study of electromagnetic wave propagation in fabric[D]. Tianjin Polytechnic University, 2016(in Chinese).
    [31] ZHAO B, GUO XQ, Zhao WY, et al. Yolk-Shell Ni@SnO2 Composites with a Designable Interspace to Improve the Electromagnetic Wave Absorption Properties[J]. ACS applied materials& interfaces, 2016, 8(42): 28917-28925.
    [32] 莫红松, 吕潇, 李光, 等. 复合材料中碳纤维的铺设方式对吸波性能的影响[A]. 第六届中国功能材料及其应用学术会议论文集(8)[C], 湖北武汉: 中国仪器仪表学会仪表材料分会, 等, 2007: 3063-3066.

    MO Hongsong, LV Xiao, Li Guang, et al . Effect of laying method of carbon fiber on wave absorbing properties of composite materials [A]. Proceedings of the 6th China Conference on Functional Materials and Their Applications (8) [C], Wuhan, Hubei: Branch of Instrumentation Materials of Chinese Society of Instrumentation, et al. 2007: 3063-3066 (in Chinese).
    [33] WANG B C, WEI J Q, YANG Y. Investigation on peak frequency of the microwave absorption for carbonyl iron/epoxy resin composite. J. Magn. Magn. Mater. 2011, 323: 1101~1103.
    [34] 刘海韬, 程海峰, 王军等. 高温结构吸波材料综述[J]. 材料导报, 2009, 23(19): 24-27. doi: 10.3321/j.issn:1005-023X.2009.19.006

    LIU Haitao, CHENG Haifeng, WANG Jun, et al. Review on High-temperat ure Struct ural Radar Absorbing Materials[J]. Materials Reports, 2009, 23(19): 24-27 (in Chinese). doi: 10.3321/j.issn:1005-023X.2009.19.006
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  152
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-09
  • 修回日期:  2023-11-13
  • 录用日期:  2023-12-12
  • 网络出版日期:  2023-12-27
  • 刊出日期:  2024-07-15

目录

    /

    返回文章
    返回