留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于纤维素纳米晶体的多功能传感器的应用研究

余梦 林涛 殷学风 刘飞亚 李杰 鲁璐璐

余梦, 林涛, 殷学风, 等. 基于纤维素纳米晶体的多功能传感器的应用研究[J]. 复合材料学报, 2024, 41(7): 3483-3493.
引用本文: 余梦, 林涛, 殷学风, 等. 基于纤维素纳米晶体的多功能传感器的应用研究[J]. 复合材料学报, 2024, 41(7): 3483-3493.
YU Meng, LIN Tao, YIN Xuefeng, et al. Application research of multi-functional sensor based on cellulose nanocrystals[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3483-3493.
Citation: YU Meng, LIN Tao, YIN Xuefeng, et al. Application research of multi-functional sensor based on cellulose nanocrystals[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3483-3493.

基于纤维素纳米晶体的多功能传感器的应用研究

基金项目: 陕西科技大学博士科研启动基金项目(2018BJ-26)
详细信息
    通讯作者:

    殷学风,博士,讲师,研究方向为纤维基功能材料及高值化利用 E-mail: yinxuefeng@sust.edu.cn

  • 中图分类号: TS71+2;TQ352.1;TB332

Application research of multi-functional sensor based on cellulose nanocrystals

Funds: Doctoral research start-up Fund project of Shaanxi University of Science and Technology (2018BJ-26)
  • 摘要: 纤维素纳米晶体(Cellulose Nanocrystals,CNC)是具有优异力学性能、光学性能和表面化学性能的纳米材料,近年来受到了研究者们的广泛关注。基于CNC的传感器具有对外部环境刺激的单重、双重及多重响应,如湿度、气体、pH、溶剂、温度、光等驱动传感,这使其在信息加密、健康检测、食品、环境监测、储能、可穿戴等领域中显示出巨大的应用潜力。本文对CNC的关键特性进行了简要介绍,并重点分析了基于CNC的多功能传感器的重要应用发展研究机制,最后总结了CNC基传感器材料在制备过程中存在的主要问题和面临的挑战,为提高其性能和功能化创新应用提供参考。

     

  • 图  1  纤维素三维纳米晶(a-c)的三维原子结构[17]

    Figure  1.  The three-dimensional atomic structure of cellulose 3 D nanocrystals (a-c).[17]

    图  2  (a)酸水解数控加工及其透射电镜分析[18,19];(b)通过倾斜角度自组装方法生产的具有彩虹色调和双灵巧光学反射的自组织CNC薄膜[22]

    Figure  2.  (a) Manufacturing of CNC by acid hydrolysis and the corresponding TEM image[18,19]; (b) Self-organized CNC films with rainbow hues and ambidextrous optical reflection, produced via tilted-angle self-assembly method.[22]

    图  3  基于CNC的手性光子晶体对外部刺激的响应图[33]

    Figure  3.  Diagram of CNC-based chiral photonic crystals that respond to external stimuli.[33]

    图  4  (a) CPx电致变色涂层的制备示意图;(b) CP2和CP3电致变色涂层分别在彩色和漂白状态下的照片[39]

    Figure  4.  (a) Schematic illustration of the preparation of CPx electrochromic coatings; (b) Photographs of the CP2 and CP3 electrochromic coatings in colored and bleached states, Respectively.[39]

    图  5  (a) CNC与SSWPU在蒸发自组装过程中的结合机理;(b)不同溶剂配比下FPFS的颜色变化示意图;(c) FPFS的溶剂响应机理图;(d)绘制加密图案的示意图[42]

    Figure  5.  (a) Combination mechanism of CNC and SSWPU during the evaporation-induced self-assembly; (b) Illustration of color change of FPFS under different ratio of solvents; (c) Solvents response mechanism diagram of FPFS; (d) Schematic illustrations of drawing encryption pattern.[42]

    图  6  (a)通过蒸发诱导自组装策略制备CNC/OS/TA薄膜的示意图[50],(b) PCD的合成及具有手性向列结构的光子CNC-PCD薄膜的制备示意图[51]

    Figure  6.  (a) Illustration of the preparation of CNCs/OS/TA films via the evaporation-induced self-assembly strategy[50], (b) Schematic illustration of the synthesis of PCD and preparation of photonic CNC-PCD film with a chiral nematic structure.[51]

    图  7  CNCs -PANI膜的两面照片:(a) CNCs和(b) PANI;(c)基于CNC-PANI薄膜的工作电路;(d) ECD示意图;(e)不同电压下的ECD;(f)不同电压下CNC薄膜的ECD照片;(g) 5次循环后ECD和CNC薄膜的照片和(h)通过圆偏振滤光片观察时[12]

    Figure  7.  Photographs of two sides of the CNC-PANI film: (a) CNCs and (b) PANI; (c) Working circuit based on CNC-PANI film; (d) Schematic representation of ECDs; Photographs of (e) ECD at different voltages and (f) ECD with CNC films at different voltages; Photographs of ECD with CNC films (g) after 5 cycles and (h) when viewed through a circularly polarized filter.[12]

    表  1  用于响应式CNC光子学的不同刺激及应用机制分析

    Table  1.   Analysis of different stimuli and application mechanism analysis for responsive CNC photonics

    IngredientsadulterantMatrix formResponse typeApplicationApplication mechanism analysisreference
    CNCOS、TA、PEDOT:PSScoatingelectrochemistryInformation encryptionElectrochromic and
    chiral combination
    [39]
    CNCSiO2filmopticsInformation encryptionphotochromism[40]
    CNCPVAhydrogelsolventInformation encryptionLocal solvent
    displacement builds cryptographic characters and patterns
    [43]
    CNCPAAcoatinghumidnessInformation encryptionPattern the coating according to RA and RH[41]
    CNCSSWPUfilmsolventInformation encryptionEthanol is used as ink to draw programmable structural color patterns on the surface of
    photonic paper
    [42]
    CNCPolyethylene glycol derivative/polyacrylamidehydrogelstress、
    temperature
    Information encryptionAnisotropic
    hydrogels show different colors by applying
    different stresses
    [44]
    CNCOS、TAfilmsolventHealth
    detection
    Chemical tuning is
    performed
    according to the obvious swelling properties of the film in different solvents
    [50]
    CNCPCDfilmsolventHealth
    detection
    Colorimetric
    identification of
    homologous
    alcohols
    [51]
    CNCCS、DChNfilmpHfoodAlkaline TVBN
    increases the pitch of the film
    [52]
    CNCHPG、IL、AnthfilmpHfoodThe color of the film changes with the content of TVBN[53]
    CNCCA、starch/
    CS
    filmopticsfoodReflectance shift causes color change[15]
    CNC-filmgasEnvironmental monitoringReversible motion in response to
    formaldehyde
    [56]
    CNCglucose、PANIfilmhumidness、
    pH、solvent
    Environmental monitoringThe pattern has a chiral nematic
    structure
    [12]
    CNCLLAfilmhumidnessEnvironmental monitoringMultidimensional
    regulation of CNC
    cholesteric structure
    [55]
    Notes:OS - oxidized starch; TA - tannic acid; PEDOT:PSS - poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate); PVA - polyvinyl plcohol; PAA - polyacrylic acid; SSWPU - waterborne polyurethanes containing dynamic covalent disulfide bonds; PCD - polymer beta-cyclodextrin; CS - chitosan; DChN - deacetylated chitin nanofibers; HPG - hydroxypropyl guar gum; IL - ionic liquid; Anth - anthocyanin; CA - citric acid; PANI - polyaniline; LLA - L-lactic acid.
    下载: 导出CSV
  • [1] GOMRI C, CRETIN M, SEMSARILAR M. Recent progress on chemical modification of cellulose nanocrystal (CNC) and its application in nanocomposite films and membranes-A comprehensive review[J]. Carbohydrate Polymers, 2022, 294: 119790. doi: 10.1016/j.carbpol.2022.119790
    [2] DUAN C, CHENG Z, WANG B, et al. Chiral photonic liquid crystal films derived from cellulose nanocrystals[J]. Small, 2021, 17(30): 2007306. doi: 10.1002/smll.202007306
    [3] LIU B R, CHENG L, YUAN Y, et al. Liquid-crystalline assembly of spherical cellulose nanocrystals[J]. International Journal of Biological Macromolecules, 2023, 242: 124738. doi: 10.1016/j.ijbiomac.2023.124738
    [4] GIESE M, SPENGLER M. Cellulose nanocrystals in nanoarchitectonics-towards photonic functional materials[J]. Molecular Systems Design & Engineering, 2019, 4(1): 29-48.
    [5] D’ACIERNO F, BAKRANI K, HAMAD W Y, et al. Tuning the Optical and Thermal Properties of Both Iridescent and Colorless Cellulose Nanocrystal Films[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(27): 8715-8724.
    [6] SUROV O V, AFINEEVSKII A V, VORONOVA M I. Sulfuric acid alcoholysis as a way to obtain cellulose nanocrystals[J]. Cellulose, 2023: 1-14.
    [7] HE J T, LI N, BIAN K Q, et al. Optically active polyaniline film based on cellulose nanocrystals[J]. Carbohydrate Polymers, 2019, 208: 398-403. doi: 10.1016/j.carbpol.2018.12.091
    [8] CASADO U, MUCCI V L, ARANGUREN M I. Cellulose nanocrystals suspensions: Liquid crystal anisotropy, rheology and films iridescence[J]. Carbohydrate Polymers, 2021, 261: 117848. doi: 10.1016/j.carbpol.2021.117848
    [9] QU D, ROJAS O J, WEI B, et al. Responsive Chiral Photonic Cellulose Nanocrystal Materials[J]. Advanced Optical Materials, 2022, 10(22): 2201201. doi: 10.1002/adom.202201201
    [10] XIONG R, YU S T, SMITH M J, et al. Self-assembly of emissive nanocellulose/quantum dot nanostructures for chiral fluorescent materials[J]. ACS nano, 2019, 13(8): 9074-9081. doi: 10.1021/acsnano.9b03305
    [11] ZHANG F S, LI Q Y, WANG C L, et al. Multimodal, Convertible, and Chiral Optical Films for Anti-Counterfeiting Labels[J]. Advanced Functional Materials, 2022, 32(33): 2204487. doi: 10.1002/adfm.202204487
    [12] FAN J, XU M C, XU Y T, et al. A visible multi-response electrochemical sensor based on cellulose nanocrystals[J]. Chemical Engineering Journal, 2023, 457: 141175. doi: 10.1016/j.cej.2022.141175
    [13] MUGO S M, LU W H, ROBERTSON S. A Wearable, Textile-Based Polyacrylate Imprinted Electrochemical Sensor for Cortisol Detection in Sweat[J]. Biosensors, 2022, 12(10): 854. doi: 10.3390/bios12100854
    [14] KHALILZADEH M A, TAJIK S, BEITOLLAHI H, et al. Green synthesis of magnetic nanocomposite with iron oxide deposited on cellulose nanocrystals with copper (Fe3O4@ CNC/Cu): investigation of catalytic activity for the development of a venlafaxine electrochemical sensor[J]. Industrial & Engineering Chemistry Research, 2020, 59(10): 4219-4228.
    [15] BABAEI-GHAZVINI A, ACHARYA B, KORBER D R. Multilayer photonic films based on interlocked chiral-nematic cellulose nanocrystals in starch/chitosan[J]. Carbohydrate Polymers, 2022, 275: 118709. doi: 10.1016/j.carbpol.2021.118709
    [16] LI S J, CHEN H B, LIU X Y, et al. Nanocellulose as a promising substrate for advanced sensors and their applications[J]. International Journal of Biological Macromolecules, 2022, 218: 473-487. doi: 10.1016/j.ijbiomac.2022.07.124
    [17] RAMEZANI M G, GOLCHINFAR B. Mechanical properties of cellulose nanocrystal (CNC) bundles: Coarse-grained molecular dynamic simulation[J]. Journal of Composites Science, 2019, 3(2): 57. doi: 10.3390/jcs3020057
    [18] RASHID A B, HOQUE M E, KABIR N, et al. Synthesis, Properties, Applications, and Future Prospective of Cellulose Nanocrystals[J]. Polymers, 2023, 15(20): 4070. doi: 10.3390/polym15204070
    [19] HABIBI Y, GOFFIN A L, SCHILTZ N, et al. Bionanocomposites based on poly (ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization[J]. Journal of Materials Chemistry, 2008, 18(41): 5002-5010. doi: 10.1039/b809212e
    [20] 卿彦, 王礼军, 吴义强, 等. 纤维素纳米晶体胆甾相液晶形成与应用[J]. 林业科学, 2019, 55(4): 152-159. doi: 10.11707/j.1001-7488.20190416

    QING Yan, WANG Lijun, WU Yiqing, et al. Formation and application of cholesteric liquid crystals in cellulose nanocrystals[J]. Scientia Silvae Sinicae, 2019, 55(4): 152-159(in Chinese). doi: 10.11707/j.1001-7488.20190416
    [21] 林涛, 王乐, 魏潇瑶, 等. 基于纤维素纳米晶体的比色传感器研究进展[J]. 中国造纸, 2022, 41(6): 95-102. doi: 10.11980/j.issn.0254-508X.2022.06.015

    LIN Tao, WANG Le, WEI Xiaoyao, et al. Research progress of colorimetric sensors based on cellulose nanocrystals[J]. China Pulp & Paper, 2022, 41(6): 95-102(in Chinese). doi: 10.11980/j.issn.0254-508X.2022.06.015
    [22] TAO J, LI J, YU X, et al. Lateral gradient ambidextrous optical reflection in self-organized left-handed chiral nematic cellulose nanocrystals films[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 608965. doi: 10.3389/fbioe.2021.608965
    [23] BABAEI-GHAZVINI A, ACHARYA B. Humidity-responsive photonic films and coatings based on tuned cellulose nanocrystals/glycerol/polyethylene glycol[J]. Polymers, 2021, 13(21): 3695. doi: 10.3390/polym13213695
    [24] CHEN H H, HOU A Q, ZHENG C W, et al. Light-and humidity-responsive chiral nematic photonic crystal films based on cellulose nanocrystals[J]. ACS Applied Materials & Interfaces, 2020, 12(21): 24505-24511.
    [25] WEI X Y, LIN T, WANG L, et al. Research on deep eutectic solvents for the construction of humidity-responsive cellulose nanocrystal composite films[J]. International Journal of Biological Macromolecules, 2023, 235: 123805. doi: 10.1016/j.ijbiomac.2023.123805
    [26] MENG Y H, HE Z B, DONG C H, et al. Multi-stimuli-responsive photonics films based on chiral nematic cellulose nanocrystals[J]. Carbohydrate Polymers, 2022, 277: 118756. doi: 10.1016/j.carbpol.2021.118756
    [27] VERMA C, CHHAJED M, SINGH S, et al. Bioinspired structural color sensors based on self-assembled cellulose nanocrystal/citric acid to distinguish organic solvents[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 655: 130206. doi: 10.1016/j.colsurfa.2022.130206
    [28] FENG K, WEI G D, LIU Y B, et al. Cellulose Nanocrystals Chiral Nematic Coating with Reversible Multiple-Stimuli-Responsive Coloration[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(22): 8374-8385.
    [29] ZHAO H D, DAI X N, YUAN Z W, et al. Iridescent chiral nematic papers based on cellulose nanocrystals with multiple optical responses for patterned coatings[J]. Carbohydrate Polymers, 2022, 289: 119461. doi: 10.1016/j.carbpol.2022.119461
    [30] SONG W, LEE J K, GONG M S, et al. Cellulose nanocrystal-based colored thin films for colorimetric detection of aldehyde gases[J]. ACS Applied Materials & Interfaces, 2018, 10(12): 10353-10361.
    [31] HE Y D, ZHANG Z L, XUE J, et al. Biomimetic optical cellulose nanocrystal films with controllable iridescent color and environmental stimuli-responsive chromism[J]. ACS Applied Materials & Interfaces, 2018, 10(6): 5805-5811.
    [32] GE W N, ZHANG F S, WANG D D, et al. Highly Tough, Stretchable, and Solvent-Resistant Cellulose Nanocrystal Photonic Films for Mechanochromism and Actuator Properties[J]. Small, 2022, 18(12): 2107105. doi: 10.1002/smll.202107105
    [33] VERMA C, CHHAJED M, SINGH S, et al. Cellulose nanocrystals for environment-friendly self-assembled stimuli doped multisensing photonics[J]. ACS Applied Polymer Materials, 2022, 4(6): 4047-4068. doi: 10.1021/acsapm.2c00061
    [34] CHANG T, WANG B C, YUAN D, et al. Cellulose nanocrystal chiral photonic micro-flakes for multilevel anti-counterfeiting and identification[J]. Chemical Engineering Journal, 2022, 446: 136630. doi: 10.1016/j.cej.2022.136630
    [35] TEODORO K B R, SANFELICE R C, MIGLIORINI F L, et al. A review on the role and performance of cellulose nanomaterials in sensors[J]. ACS Sensors, 2021, 6(7): 2473-2496. doi: 10.1021/acssensors.1c00473
    [36] XU H, LIU X R, QIN J H, et al. Nitrogen-doped hierarchical porous carbon nanomaterial from cellulose nanocrystals for voltammetric determination of ascorbic acid[J]. Microchemical Journal, 2021, 168: 106494. doi: 10.1016/j.microc.2021.106494
    [37] 冉琳琳, 谢帆钰, 王封丹, 等. 纳米纤维素的制备及应用研究进展[J]. 广州化工, 2021, 49(6): 1-5+10. doi: 10.3969/j.issn.1001-9677.2021.06.002

    RAN Linlin, XIE Fanyu, WANG Fengdan, et al. Progress in preparation and application of nanocellulose[J]. Guangzhou Chemical Industry, 2021, 49(6): 1-5+10(in Chinese). doi: 10.3969/j.issn.1001-9677.2021.06.002
    [38] NGUYEN L H, NAFICY S, CHANDRAWATI R, et al. Nanocellulose for sensing applications[J]. Advanced Materials Interfaces, 2019, 6(18): 1900424. doi: 10.1002/admi.201900424
    [39] FENG K, LU M F, WEI G D, et al. Cellulose Nanocrystals/Poly (3, 4-ethylenedioxythiophene) Photonic Crystal Composites with Electrochromic Properties for Smart Windows, Displays, and Anticounterfeiting/Encryption Applications[J]. ACS Applied Nano Materials, 2022, 5(8): 10848-10859. doi: 10.1021/acsanm.2c02160
    [40] SHI Z X, ZHAO W W, ZHANG Y, et al. Triply Hiding Optical Information via Excitation-Dependent Allochroic Photoluminescence Based on Cellulose Derivates[J]. Small, 2023, 19(3): 2205697. doi: 10.1002/smll.202205697
    [41] ZHAO G M, HUANG Y P, MEI C T, et al. Chiral nematic coatings based on cellulose nanocrystals as a multiplexing platform for humidity sensing and dual anticounterfeiting[J]. Small, 2021, 17(50): 2103936. doi: 10.1002/smll.202103936
    [42] XUE R, ZHAO H, AN Z W, et al. Self-healable, solvent response cellulose nanocrystal/waterborne polyurethane nanocomposites with encryption capability[J]. ACS Nano, 2023, 17(6): 5653-5662. doi: 10.1021/acsnano.2c11809
    [43] SUN W, WANG J, HE M. Anisotropic cellulose nanocrystal composite hydrogel for multiple responses and information encryption[J]. Carbohydrate Polymers, 2023, 303: 120446. doi: 10.1016/j.carbpol.2022.120446
    [44] LIU L, TANGUY N R, Yan N, et al. Anisotropic cellulose nanocrystal hydrogel with multi-stimuli response to temperature and mechanical stress[J]. Carbohydrate Polymers, 2022, 280: 119005. doi: 10.1016/j.carbpol.2021.119005
    [45] ZHOU Y, LU C H, LU Z X, et al. Chiroptical Nanocellulose Bio-Labels for Independent Multi-Channel Optical Encryption[J]. Small, 2023: 2303064.
    [46] LONG W, OUYANG H, HU X, et al. State-of-art review on preparation, surface functionalization and biomedical applications of cellulose nanocrystals-based materials[J]. International Journal of Biological Macromolecules, 2021, 186: 591-615. doi: 10.1016/j.ijbiomac.2021.07.066
    [47] ABD MANAN F A, HONG W W, ABDULLAH J, et al. Nanocrystalline cellulose decorated quantum dots based tyrosinase biosensor for phenol determination[J]. Materials Science and Engineering:C, 2019, 99: 37-46. doi: 10.1016/j.msec.2019.01.082
    [48] TRACEY C T, TORLOPOV M A, MARTAKOV I S, et al. Hybrid cellulose nanocrystal/magnetite glucose biosensors[J]. Carbohydrate Polymers, 2020, 247: 116704. doi: 10.1016/j.carbpol.2020.116704
    [49] ESMAEILI C, ABDI M M, MATHEW A P, et al. Synergy effect of nanocrystalline cellulose for the biosensing detection of glucose[J]. Sensors, 2015, 15(10): 24681-24697. doi: 10.3390/s151024681
    [50] FENG K, DONG C L, GAO Y L, et al. A green and iridescent composite of cellulose nanocrystals with wide solvent resistance and strong mechanical properties[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(19): 6764-6775.
    [51] HU C Y, BAI L, SONG F, et al. Cellulose nanocrystal and β-cyclodextrin chiral nematic composite films as selective sensor for methanol discrimination[J]. Carbohydrate Polymers, 2022, 296: 119929. doi: 10.1016/j.carbpol.2022.119929
    [52] CHEN J, LING Z, WANG X Y, et al. All bio-based chiral nematic cellulose nanocrystals films under supramolecular tuning by chitosan/deacetylated chitin nanofibers for reversible multi-response and sensor application[J]. Chemical Engineering Journal, 2023, 466: 143148. doi: 10.1016/j.cej.2023.143148
    [53] MENG Y H, LUO H Z, DONG C H, et al. Hydroxypropyl guar/cellulose nanocrystal film with ionic liquid and anthocyanin for real-time and visual detection of NH3[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(26): 9731-9741.
    [54] LEI Y L, YAO Q Y, JIN Z H, et al. Intelligent films based on pectin, sodium alginate, cellulose nanocrystals, and anthocyanins for monitoring food freshness[J]. Food Chemistry, 2023, 404: 134528. doi: 10.1016/j.foodchem.2022.134528
    [55] DUAN C L, WANG B, LI J P, et al. Multidimensional dynamic regulation of cellulose coloration for digital recognition and humidity response[J]. International Journal of Biological Macromolecules, 2023, 234: 123597. doi: 10.1016/j.ijbiomac.2023.123597
    [56] ZHAO G, ZHANG Y, ZHAI S C, et al. Dual response of photonic films with chiral nematic cellulose nanocrystals: Humidity and formaldehyde[J]. ACS Applied Materials & Interfaces, 2020, 12(15): 17833-17844.
    [57] ANDREW L J, GILLMAN E R, WALTERS C M, et al. Multi-Responsive Supercapacitors from Chiral Nematic Cellulose Nanocrystal-Based Activated Carbon Aerogels[J]. Small, 2023: 2301947.
    [58] WANG Z S, MA Z X, WANG S B, et al. Cellulose nanocrystal/phytic acid reinforced conductive hydrogels for antifreezing and antibacterial wearable sensors[J]. Carbohydrate Polymers, 2022, 298: 120128. doi: 10.1016/j.carbpol.2022.120128
    [59] NASSERI R, BOUZAEI N, HUANG J, et al. Programmable nanocomposites of cellulose nanocrystals and zwitterionic hydrogels for soft robotics[J]. Nature Communications, 2023, 14(1): 6108. doi: 10.1038/s41467-023-41874-7
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  191
  • HTML全文浏览量:  104
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-03
  • 修回日期:  2023-11-28
  • 录用日期:  2023-12-06
  • 网络出版日期:  2023-12-21
  • 刊出日期:  2024-07-15

目录

    /

    返回文章
    返回