留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

酚醛改性环氧类玻璃体的制备及其自修复性能

廉维强 赵小佳 彭桂荣 张思琪

廉维强, 赵小佳, 彭桂荣, 等. 酚醛改性环氧类玻璃体的制备及其自修复性能[J]. 复合材料学报, 2023, 42(0): 1-11.
引用本文: 廉维强, 赵小佳, 彭桂荣, 等. 酚醛改性环氧类玻璃体的制备及其自修复性能[J]. 复合材料学报, 2023, 42(0): 1-11.
LIAN Weiqiang, ZHAO Xiaojia, PENG Guirong, et al. Preparation and self-healing property of phenolic modified epoxy vitrimer[J]. Acta Materiae Compositae Sinica.
Citation: LIAN Weiqiang, ZHAO Xiaojia, PENG Guirong, et al. Preparation and self-healing property of phenolic modified epoxy vitrimer[J]. Acta Materiae Compositae Sinica.

酚醛改性环氧类玻璃体的制备及其自修复性能

详细信息
    通讯作者:

    彭桂荣,博士,教授,博士生导师,研究方向为聚合物自修复,聚合物介电薄膜; E-mail: gr8599@ysu.edu.cn

  • 中图分类号: TQ322.4;TB332

Preparation and self-healing property of phenolic modified epoxy vitrimer

  • 摘要: 类玻璃体(vitrimer)在保持交联的状态下还具有塑性变形能力,意味着传统的热固性树脂具有了二次热加工成型的能力,有效的减少废品率,从源头减少垃圾。利用Vitrimer具有的塑性变形能力也可以进行材料自修复而延长使用寿命,从而对环境保护、减排做出贡献。本文以异辛酸亚锡为催化剂,酚醛树脂为改性剂制备了环氧 vitrimer 材料。研究结果表明,催化剂含量的增加会使体系固化更加完全,所以对材料弯曲强度有一定的改善,最高可达到 87.5 MPa。引入酚醛树脂后弯曲强度由改性前的 87.5 MPa 提高到 126.9 MPa,拉伸强度达 63.3 MPa。但酚醛树脂的加入量过高时,材料的交联密度有所降低,其力学性能在达到顶点后出现下降趋势。对酸酐固化的环氧 vitrimer 体系松弛过程研究表明:增加催化剂含量和提高温度都可以降低材料的松弛时间,但是高温后固化会抑制松弛过程,影响自焊接强度。酚醛改性后材料的应力松弛明显快于纯酸酐固化的环氧试样。10%催化剂试样在180 ℃至190 ℃松弛速率产生一个突变,190 ℃明显的加快,而酚醛的引入则可以将突变温度Ts提前到180 ℃。在无压力条件下,样品可以实现划痕的修复。在松弛的突变温度以上修复的试样剪切强度和划痕修复效果明显提高。相对未加酚醛样品,酚醛改性样品修复效果更好。催化剂对试样修复强度和修复速度有明显影响。

     

  • 图  1  试样制备过程示意图

    Figure  1.  Diagram of preparation process of samples

    图  2  10%固化剂含量的树脂液固化不同时间的FTIR全谱图(a)和局部放大对比(b)

    Figure  2.  FTIR spectra (a) and local enlarged spectra (b) of the resin mixture with 10% cure reagent cured for various times

    图  3  SamCa系列试样(a)及SamPF系列酚醛树脂改性(b)试样的DSC分析曲线

    Figure  3.  DSC curves of the SamCa vitrimer samples (a) and that SamPF samples (b)

    图  4  不同酚醛树脂含量vitrimer试样的可溶物溶出份数和溶胀比率

    Figure  4.  Percent of sol and swelling ratio of vitrimer samples with various content of phenolic resin

    图  5  固化后的SamCa试样和SamPF试样的弯曲强度

    Figure  5.  Bending strength of the cured SamCas and SamPFs

    图  6  催化剂含量不同(■,O,∆)的SamCa系列样品在200℃下的应力松弛曲线

    Figure  6.  Stress relaxation curves for SamCa series samples with various content of catalyst(■,O,∆) at 200℃

    图  7  酚醛含量不同(■,O,$ \Delta $)的SamPF系列试样210 ℃下的应力松弛曲线

    Figure  7.  Stress relaxation curves for SamPF series samples with various content of phenolic (■,O,∆) at 210 ℃

    图  8  SamCa 10 (a)和SamPF 20试样(b)在不同温度下的应力松弛曲线(G/G0:归一化剪切模量)及其松弛时间随温度的变化(c)

    Figure  8.  Relaxation curves (G/G0: Normalized shear modulus) vs. temperature for SamCa 10 (a) and SamPF 20 (b) and their relaxation time vs.temperature curves (c)

    图  9  (a) SamCa试样的环氧基团残留量(□)及不同温度下试样拉伸剪切强度随催化剂含量的变化,(b) SamPF系列试样在170℃下自焊接30 min的拉伸剪切强度(□),以及SamPF 20试样拉伸剪切强度随温度的相对变化(◊)

    Figure  9.  Residue epoxy groups of SamCa samples (□) and their tensile shear strength vs. content of catalyst at various temperature (a), tensile shear strength vs content of phenolic resin for SamPF samples welded at 170℃ for 30 min (□) and tensile shear strength vs temperature for SamPF 20 sample (◊)

    图  10  SamCa 10样品在200 ℃下试样后固化前后的自焊接强度(a)及试样弯曲疲劳损伤前后及修复后的弯曲强度(b)

    Figure  10.  Self-welding strength for SamCa 10 samples at 200 ℃ (a) and bending strength for the samples after and before bending fatigue damage and self-healing (b)

    图  11  160℃ (a,b)和200℃(c,d)温度下SamCa 10试样划痕修复前(a,c)和修复后(b,d)对比图

    Figure  11.  Before (a, c) and after (b, d) healing of scratch for SamCa 10 sample at (a, b) 160℃ and (b, d) 200℃

    图  12  SamPF 20酚醛改性试样分别在170℃(a,b)和210℃(c,d)温度下划痕修复前(a,c)和修复后(b,d)的对比图

    Figure  12.  Before (a, c) and after (b, d) healing of scratch for SamPF 20 samples at (a, b) 170℃ and (c, d) 210℃

    表  1  试样固化后环氧基团残余量

    Table  1.   Residue epoxy groups of the cured samples

    Catalyst percent in SamCas/mol% 0 3 5 7 10 15
    Residual epoxy groups in SamCas/% 11.2 9.9 8.3 6.4 6.2 7.6
    Phenolic percent in SamPFs/wt% 0 5 10 20 30 40
    Residual epoxy groups in SamPFs/% 7.9 3.8 6.9 5.1 4.4 4.0
    下载: 导出CSV

    表  2  SamPF 系列试样的拉伸力学性能

    Table  2.   Tensile strength of the SamPF series samples

    Phenolic percent/wt% Tensile strength/
    MPa
    Elongation at break/% Modulus/
    GPa
    0 54.4±5.5 4.5±0.4 1.1±0.12
    25 58.5±4.3 5.7±0.9 1.2±0.03
    10 62.3±1.1 6.1±0.3 1.1±0.06
    20 63.3±0.6 6.0±0.5 1.3±0.27
    30 63.0±1.3 6.2±0.7 1.2±0.22
    40 59.3±3.3 6.1±0.4 1.1±0.12
    下载: 导出CSV

    表  3  试样不同温度下多次焊接的热焊接强度

    Table  3.   Welding strength of the samples repeated welded under different temperature

    Welding times Tensile shear strength/MPa
    1 2 3 4 5
    SamPF 20 170℃ 1.8 1.6 1.4 1.1 1.1
    190℃ 2.0 1.6 1.2 1.4 1.3
    210℃ 2.2 2.1 2.0 1.8 2.0
    SameCa 10 180℃ 2.4 1.3 0.9 0.7 --
    下载: 导出CSV
  • [1] PATEL K. K. AND PUROHIT R. Future pro -spects of shape memory polymer nano-composite and epoxy based shape memory polymer-a review[J]. Materials Today:Proceedings, 2018, 5(9): 20193-20200. doi: 10.1016/j.matpr.2018.06.389
    [2] MONTARNAL D. , CAPELOT M. , TOURN -ILHAC F. , LEIBLER L. Silica-like malleable materials from permanent organic networks[J]. Science. 2011, 334(6058): 965-968.
    [3] CAPELOT M. , UNTERLASS M. M. , TOURNILHA -C F. , LEIBLER L. Catalytic control of the vitrimer glass transition[J]. ACS Macro. Letters, 2013, 1(7): 789–792.
    [4] CAPELOT M. , MONTARNAL D. , TOURNILHAC F. , LEIBLER L. Metal-catalyzed transesterification for healing and assembling of thermosets[J]. J. Am. Chem. Soc. , 2012, 134(18): 7664-7667.
    [5] WINNE J. M. , LEIBLER L. , DU PREZ F. E. Dynamic covalent chemistry in polymer networks: a mechanistic perspective[J]. Polym. Chem. , 2019, 10(45): 6091-6108.
    [6] DENISSEN W. , DROESBEKE M. , NICOLAŸ R. , LEIBLER L. , WINNE J. M. , DU PREZ F. E. Chemical control of the viscoelastic properties of vinylogous urethane vitrimers[J]. Nat. Comun. , 2017, 8: 14857.
    [7] CHEN Z. , SHI Q. , KUANG X. , QI H. J. , WANG T. Ultrastrong intrinsic bonding for thermoset composites via bond exchange reactions[J]. Composites Part B, 2020, 194: 108054.
    [8] AZCUNE I, ELORZA E, RUIZ DE LUZURIAGA A, HUEGUN A, REKONDO A, GRANDE H-J. Analysis of the effect of network structure and disulfide concentration on vitrimer properties[J]. Polymers, 2023, 15(20): 4123. doi: 10.3390/polym15204123
    [9] 杨伟明, 席澳千, 杨斌, 曾艳宁. 基于多重动态共价键的环氧类玻璃网络的制备与性能[J]. 高等学校化学学报, 2022, 43(11): 20220308

    YANG Weiming, XI Aoqian, YANG Bin, ZENG Yanning. Fabrication and properties of epoxy vitri-mer based on multiply dynamic covalent bonds[J]. Chem. J. Chinese Universities, 2022, 43(11): 20220308(in Chinese).
    [10] LUO Zhaoyi, YANG Bin, LIU Fanqi, PAN Xianjie, and ZENG Yanning. Recoverable rosin-based epoxy vitrimers with robust mechanical properties and high thermostability[J]. ACS Applied Polymer Materials, 2023, 5(10): 8670-8678. doi: 10.1021/acsapm.3c01373
    [11] LUO Chumeng, WANG Weichao, YANG Wei, LIU Xingyu, LIN Jun, Zhang Liqun, and HE Shaojian. High-strength and multi-recyclable epoxy vitrimer containing dual-dynamic covalent bonds based on the disulfide and imine bond metathesis[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(39): 14591-14600.
    [12] DENISSEN W. , WINNE J. M. , DU PREZ F. E. Vitrimers: Permanent organic networks with glass-like fluidity[J]. Chem. Sci. , 2016, 7(1): 30–38.
    [13] YANG Yang, XU Yanshuang, JI Yan, WEI Yen. Functional epoxy vitrimers and composites[J]. Progress in Materials Science, 2021, 120: 100710. doi: 10.1016/j.pmatsci.2020.100710
    [14] GUERRE M. , TAPLAN C. , WINNE J. M. , DU PREZ F. E. Vitrimers: directing chemical reactivity to control material properties[J]. Chem. Sci. , 2020, 11(18): 4855-4870.
    [15] LUO J. , DEMCHUK Z. , ZHAO X. , SAIT -OT. , TIAN M. , SOKOLOV A. P. , CAO P. F. Elastic vitrimers: Beyond thermoplastic and thermoset elastomers[J]. Matter, 2022, 5 (5): 1391-1422.
    [16] ZHANG Ze Ping, RONG Min Zhi, ZHANG Ming Qiu. Polymer engineering based on reversible covalent chemistry: A promising innovative pathway towards new materials and new functionalities[J]. Progress in Polymer Science, 2018, 80: 39-93. doi: 10.1016/j.progpolymsci.2018.03.002
    [17] BRUTMAN J. P. , DELGADO P. A. , HILLMYER M. A. Polylactide vitrimers[J]. ACS Macro Letters, 2014, 3(7): 607-610.
    [18] YAN P. , ZHAO W. , FU X. , LIU Z. , KONG W. , ZHOU Z. M. , LEI J. X. Multifunctional polyurethane-vitrimers completely based on transcarbamoylation of carbamates: thermally-induced dual-shape memory effect and self-welding[J]. RSC Advances, 2017, 7(43): 26858-26866.
    [19] DENISSEN W. , RIVERO G. , NICOLAŸ R. , LEIBLER L. , WINNE J. M. , PREZ F. E. D. Vinylogous urethane vitrimers[J]. Adv. Funct. Mater. , 2015, 25(16): 2451-2457.
    [20] De LUZURIAG A. R. , MARTIN R. , MARKAIDE N. , REKONDO A. , CABANERO G. , RODRIGUEZ J. , ODRIOZOLA I. Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites[J]. Mater. Horizons, 2016, 3(3): 241-247.
    [21] SCHENK, V. , D’ELIA R. , OLIVIER, P. , LABASTIE, K. , DESTARAC, M. , GUERRE, M. Exploring the limits of high-Tg epoxy vitrimers produced through resin-transfer molding[J]. ACS Appl. Mater. Interfaces, 2023, 15(39): 46357−46367.
    [22] WU X. , YANG X. , YU R. , ZHAO X. J. , ZHANG Y. , HUANG W. A Facile access to stiff epoxy vitrimers with excellent mechanical properties via siloxane equilibration[J]. J. Mater. Chem. A, 2018, 6(22): 10184-10188.
    [23] HAN J. R. , LIU T. , HAO C. , ZHANG S. , GUO B. H. , ZHANG J. W. A Catalyst-free epoxy vitrimer system based on multifunctional hyperbranched polymer[J]. Macro-molecules, 2018, 51(17): 6789-6799.
    [24] VAIDYULA R. R. , DUGAS P. Y. , RAWSTRON E. , BOURGEATLAMI E. , MONTARN A D. Improved malleability of miniemulsion-based vitrimers through in situ generation of carboxylate surfactants[J]. Polym. Chem. , 2019, 10(23): 3001-3005.
    [25] SANGALETTI D. , CESERACCIU L. , MARINI L. , ATHANASSIOU A. , ZYCH A. Biobased boronic ester vitrimer resin from epoxidized linseed oil for recyclable carbon fiber composites[J]. Resources, Conservation and Recycling, 2023, 198: 107205.
    [26] MACIEJ PODGÓRSKI, FAIRBANKS B. D. , KIRKPATRICK B. E. , MCBRIDE M. , MARTINEZ A, DOBSON A. , BONGIARDINA N. J, BOWMAN C. N. Toward stimuli-responsive dynamic thermosets through continuous development and improvements in covalent adaptable networks (CANs)[J]. Adv. Mater. , 2020, 32(20): 1906876.
    [27] LIU W. , SCHMIDT D. F. , and REYNAUD E. Catalyst selection, creep, and stress relaxation in high-performance epoxy vitrimers[J]. Ind. Eng. Chem. Res. , 2017, 56(10): 2667-2672.
    [28] SCHEUTZ G. M. , LESSARD J. J. , SIMS M. B. , and SUMERLIN B. S. Adaptable crosslinks in polymeric materials: resolving the intersection of thermoplastics and thermosets[J]. J. Am. Chem. Soc. , 2019, 141(41): 16181-16196.
    [29] CAPELOT M. , UNTERLASS M. M. , TOURNILHAC F. , and LEIBLER L. Catalytic control of the vitrimer glass transition[J]. ACS Macro. Lett. , 2012, 1(7): 789-792.
    [30] 中国国家标准化管理委员会. 塑料弯曲性能的测定: GB/T 9341-2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Plastics-determination of flexural properties: GB/T 9341-2008[S]. Beijing: China Standards Press, 2005(in Chinese).
    [31] YANG Y. , PENG G R. , WU S. , HAO W G. A Repairable anhydride-epoxy system with high mechanical properties inspired by vitrimers[J]. Polymer, 2018, 159: 162-168.
    [32] FENG Yang, NIE Zhuguang, CHEN Jinqiu, GONG Kaijie, SHAN Yiyi, DONG Fanghong, FAN Xiao-dong, and QI Shuhua. Tuning the dynamic properties of epoxy vitrimers via bioinspired polymer–nanoparticle bond dynamics[J]. ACS Macro Letters, 2023, 12(9): 1201-1206. doi: 10.1021/acsmacrolett.3c00406
  • 加载中
计量
  • 文章访问数:  133
  • HTML全文浏览量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-20
  • 修回日期:  2023-11-27
  • 录用日期:  2023-12-09
  • 网络出版日期:  2024-01-02

目录

    /

    返回文章
    返回