留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维增强树脂复合材料螺旋加强金属柱壳屈曲特性

左新龙 唐文献

左新龙, 唐文献. 碳纤维增强树脂复合材料螺旋加强金属柱壳屈曲特性[J]. 复合材料学报, 2024, 41(6): 3272-3282.
引用本文: 左新龙, 唐文献. 碳纤维增强树脂复合材料螺旋加强金属柱壳屈曲特性[J]. 复合材料学报, 2024, 41(6): 3272-3282.
ZUO Xinlong, TANG Wenxian. Buckling of metallic cylindrical shells stiffened with helical CFRP stripes[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3272-3282.
Citation: ZUO Xinlong, TANG Wenxian. Buckling of metallic cylindrical shells stiffened with helical CFRP stripes[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3272-3282.

碳纤维增强树脂复合材料螺旋加强金属柱壳屈曲特性

基金项目: 国家自然科学基金(52171258)
详细信息
    通讯作者:

    左新龙,博士,讲师,研究方向为深海耐压结构设计与制造 E-mail: 386716254@qq.com

  • 中图分类号: U674.941

Buckling of metallic cylindrical shells stiffened with helical CFRP stripes

Funds: National Natural Science Foundation of China (52171258)
  • 摘要: 为开展碳纤维增强树脂复合材料螺旋加强金属柱壳屈曲特性理论研究,建立了复合材料螺旋加强金属柱壳的复材层局部包裹面积比与厚度比数学关系,推导了金属内衬复材螺旋缠绕多层耐压壳抗压极限载荷理论模型。其次,开展了线性屈曲及非线性屈曲分析,并与试验结果对比分析。最后,根据推导的理论模型,形成了该类型全尺寸柱壳适用水深图谱。结果表明:插值法分析中数值分析与理论计算值的误差随复合材料包裹面积比增加而减小,最大误差为5.2%,最小误差为0.9%;试验模型中理论计算与数值分析、试验结果误差分别为3.20%、3.46%,三者具有良好一致性;内衬金属层厚度一定时,螺旋包裹适当复合材料带可适应水深范围较广,该应用对水下管路原位加强、深水管再利用等方面提供新思路。

     

  • 图  1  金属柱壳复合材料加强示意图

    Figure  1.  Sketch of steel cylinder strengthen with composite

    图  2  复合材料带

    Figure  2.  Composite stripes

    图  3  复合材料螺旋加强金属柱壳数值模型

    Figure  3.  Finite-element model of the steel cylinder with helical composite stiffeners

    图  4  柱壳受静水压力

    Figure  4.  Cylindrical shell under hydrostatic pressure.

    图  5  网格收敛性验证

    Figure  5.  Convergence of the mesh size of finite element model

    图  6  复合材料螺旋加强金属柱壳屈曲载荷

    Figure  6.  Linear buckling loads of the steel cylinders with composite helical stiffeners

    图  7  载荷比拟合

    Figure  7.  Fitting model for ratio of buckling loads

    图  8  系数拟合

    Figure  8.  Fitting parameters

    图  9  复合材料螺旋加强金属柱壳屈曲载荷值(Pn:数值解;Pt:理论解)

    Figure  9.  Buckling loads of composite helical stiffened steel cylinders obtained using fitting parameters (Pn:Numerical results;Pt:Analytical results)

    图  10  试验流程:(a)长金属柱壳;(b)试样切割与研磨;(c)无封盖试样;(d)试样;(e)静水压力试验

    Figure  10.  Experimental flow: (a)Long steel cylinder; (b)Cutting and grinding of hybrid cylinder; (c)Sample without bung; (d)Sample; (e)Sample testing

    图  11  碳纤维增强树脂复合材料螺旋加强金属柱壳静水加压曲线

    Figure  11.  Pressure–time curves obtained from the hydrostatic test of the fabricated metallic cylindrical shells stiffened with helical CFRP stripes

    图  12  复合材料螺旋加强柱壳水深图谱

    Figure  12.  Chart design for cylinder stiffened with helical composite stripes

    图  13  复合材料螺旋加强柱壳平衡曲线

    Figure  13.  Applied pressure versus collapse point displacement for cylinder stiffened with helical composite stripes

    表  1  碳纤维增强树脂复合材料属性

    Table  1.   Material properties of CFRP composites provided by the manufacturer

    Strength /MPa XT 1400.09 Young’s modulus /GPa E11 115
    XC 580.06 E22 7.7
    YT 44.36 G12 3.72
    YC 133.03 G13 3.72
    S12 45.04 Poisson’s ratio v12 0.33
    S13 45.04
    下载: 导出CSV

    表  2  复合材料螺旋加强与全包裹组合柱壳屈曲载荷值

    Table  2.   Buckling loads of the hybrid cylinders and steel cylinders with helical stiffeners

    Sample Thickness ratio PW-N/
    MPa
    l/R Area ratio PH-N/
    MPa
    PH-N/
    PW-N
    1 tc/ts=0.2 3.205 0.1 0.111 2.813 0.878
    2 0.2 0.222 2.859 0.892
    3 0.3 0.333 2.898 0.904
    4 0.4 0.444 2.948 0.920
    5 0.5 0.555 2.993 0.934
    6 0.6 0.666 3.034 0.947
    7 0.7 0.777 3.085 0.963
    8 0.8 0.888 3.130 0.977
    9 tc/ts=1.0 7.438 0.1 0.111 3.280 0.441
    10 0.2 0.222 3.720 0.500
    11 0.3 0.333 4.084 0.549
    12 0.4 0.444 4.519 0.608
    13 0.5 0.555 4.959 0.667
    14 0.6 0.666 5.410 0.727
    15 0.7 0.777 5.933 0.798
    16 0.8 0.888 6.464 0.869
    17 tc/ts=1.4 9.934 0.1 0.111 3.683 0.371
    18 0.2 0.222 4.410 0.444
    19 0.3 0.333 4.985 0.502
    20 0.4 0.444 5.626 0.566
    21 0.5 0.555 6.089 0.613
    22 0.6 0.666 6.503 0.655
    23 0.7 0.777 7.048 0.709
    24 0.8 0.888 6.610 0.766
    Notes: PW-N—Numerical buckling load of steel cylinder strengthen wholly with composite; PH-N—Numerical buckling load of steel cylinder with helical stiffeners; tc—Thickness of composite layer; ts—Thickness of steel layer; l—Width of composite stripes; R—Outer radius of inner steel layer.
    下载: 导出CSV

    表  3  拟合系数

    Table  3.   Fitting parameters

    Sampletc/tsab
    10.20.1270.863
    210.5440.373
    31.40.4930.332
    Notes: tc=Thickness of composite layer; ts=Thickness of steel layer; a, b=Coefficient of linear function.
    下载: 导出CSV

    表  4  拟合系数求解的螺旋加强载荷值(与全包裹载荷比值)(tc/ts=0.6)

    Table  4.   Buckling loads of helical stiffened cylinders obtained using fitting parameters (ratio of calculated values to one of hybrid cylinders) (tc/ts=0.6)

    Samplel/RArea ratioPH-T/PW-TPH-T/MPaPH-N/MPaDifference (%)
    10.10.1110.5972.8322.9885.2
    20.20.2220.6443.0553.1924.3
    30.30.3330.6913.2773.3652.6
    40.40.4440.7373.5003.5702.0
    50.50.5550.7843.7223.7751.4
    60.60.6660.8313.9453.9810.9
    70.70.7770.8784.1674.2161.2
    80.80.8880.9254.3904.4331.0
    Notes: PH-T—Theoretical solution for buckling load of steel cylinder with helical stiffeners.
    下载: 导出CSV

    表  5  碳纤维增强树脂复合材料螺旋加强金属柱壳载荷数值结果\理论值\试验结果

    Table  5.   Numerical, theoretical and experimental results of the fabricated metallic cylindrical shells stiffened with helical CFRP stripes; the ratio of calculated value to experimental value is indicated in parentheses

    SamplePtest (MPa)Pnon (MPa)PCH (MPa)Difference(%)
    HC16.0186.109 (1.015)5.932 (0.970)3.46
    HC26.2146.094 (0.981)
    Notes: Ptest—Experimental results of the fabricated sample; Plinear—Linear buckling load of steel cylinder strengthen wholly with composite; Pnon—Non-linear buckling load of steel cylinder with helical stiffeners; PCH—Theoretical solution for buckling load of the fabricated sample; Difference (%) = [(6.018+6.214)/2-5.932]/5.932.
    下载: 导出CSV

    表  6  复材螺旋加强金属柱壳前20阶模态及特征值

    Table  6.   First 20 linear eigenvalues (MPa) and eigenmodes of cylinder stiffened with helical composite stripes

    NO.1st2nd3rd4th5th6th7th8th9th10th
    Pliner5.8235.8568.0288.0359.9129.91214.05614.05814.26614.275
    Mode
    NO.11th12th13th14th15th16th17th18th19th20th
    Pliner15.03115.03216.63016.63319.08219.08620.60220.64121.86121.862
    Mode
    Notes: Plinear—Linear buckling load.
    下载: 导出CSV
  • [1] MAGNUCKI K, JASION P, RODAK M. Strength and buckling of an untypical dished head of a cylindrical pressure vessel[J]. International Journal of Pressure Vessels and Piping, 2018, 161: 17-21. doi: 10.1016/j.ijpvp.2018.02.003
    [2] MAGNUCKI K, LEWINSKI J, CICHY R. Strength and buckling problems of dished heads of pressure vessels—contemporary look[J]. Journal of Pressure Vessel Technology, Transactions of the ASME, 2018, 140(4): 041201.
    [3] BŁACHUT J. Buckling of cylinders with imperfect length[C]//Paris: Proceedings of the ASME 2013 Pressure Vessels and Piping Conference, 2013: 1-9.
    [4] BŁACHUT J. Experimental perspective on the buckling of pressure vessel components[J]. Applied Mechanics Reviews, 2014, 66(1): 010803.
    [5] BŁACHUT J, MAGNUCKI K. Strength, stability, and optimization of pressure vessels: Review of selected problems[J]. Applied Mechanics Reviews, 2008, 61(1-6): 0608011-06080133.
    [6] ROSS C T F. Pressure vessels[M]. Philadelphia: Woodhead Publishing Limited, 2011.
    [7] KHAMLICHI A, BEZZAZI M, LIMAM A. Buckling of elastic cylindrical shells considering the effect of localized axisymmetric imperfections[J]. Thin-Walled Structures, 2004, 42(7): 1035-1047. doi: 10.1016/j.tws.2004.03.008
    [8] FATEMI S M, SHOWKATI H, MAALI M. Experiments on imperfect cylindrical shells under uniform external pressure[J]. Thin-Walled Structures, 2013, 65: 14-25. doi: 10.1016/j.tws.2013.01.004
    [9] IFAYEFUNMI O, FADZULLAH S H S M. Buckling behaviour of imperfect axially compressed cylinder with an axial crack[J]. International Journal of Automotive and Mechanical Engineering, 2017, 14(1): 3837-3848. doi: 10.15282/ijame.14.1.2017.3.0313
    [10] BŁACHUT J. Buckling of axially compressed cylinders with imperfect length[J]. Computers and Structures, 2010, 88(5-6): 365-374. doi: 10.1016/j.compstruc.2009.11.010
    [11] JASION P, MAGNUCKI K. Elastic buckling of Cassini ovaloidal shells under external pressure - Theoretical study[J]. Archives of Mechanics, 2015, 67(2): 179-192.
    [12] ZHANG J, WANG W M, CUI W C, et al. Buckling of longan-shaped shells under external pressure[J]. Marine Structures, 2018, 60: 218-225. doi: 10.1016/j.marstruc.2018.04.002
    [13] ZHANG J, WANG W M, WANG F, et al. Elastic buckling of externally pressurized Cassini oval shells with various shape indices[J]. Thin-Walled Structures, 2018, 122: 83-89. doi: 10.1016/j.tws.2017.10.008
    [14] TANG W X, ZHANG S, ZHANG J, et al. Experimental study on the failure modes of circumferentially corrugated cylinders under external hydrostatic pressure[J]. Thin-Walled Structures, 2020, 156: 106988. doi: 10.1016/j.tws.2020.106988
    [15] MALINOWSKI M, BELICA T, MAGNUCKI K. Buckling and post-buckling behaviour of elastic seven-layered cylindrical shells - FEM study[J]. Thin-Walled Structures, 2015, 94: 478-484. doi: 10.1016/j.tws.2015.05.017
    [16] SHOKRZADEH A R, SOHRABI M R. Strengthening effects of spiral stairway on the buckling behavior of metal tanks under wind and vacuum pressures[J]. Thin-Walled Structures, 2016, 106: 437-447. doi: 10.1016/j.tws.2016.05.023
    [17] CHO S R, DO Q T, SHIN H K. Residual strength of damaged ring-stiffened cylinders subjected to external hydrostatic pressure[J]. Marine Structures, 2017, 56: 186-205. doi: 10.1016/j.marstruc.2017.08.005
    [18] CHO S R, MUTTAQIE T, DO Q T, et al. Experimental investigations on the failure modes of ring-stiffened cylinders under external hydrostatic pressure[J]. International Journal of Naval Architecture and Ocean Engineering, 2018, 10(6): 711-729. doi: 10.1016/j.ijnaoe.2017.12.002
    [19] SHIOMITSU D, YANAGIHARA D. Elastic local shell and stiffener-tripping buckling strength of ring-stiffened cylindrical shells under external pressure[J]. Thin-Walled Structures, 2020, 148: 106622. doi: 10.1016/j.tws.2020.106622
    [20] WANG X S, LI P N, WANG R Z. Study on hydro-forming technology of manufacturing bimetallic CRA-lined pipe[J]. International Journal of Machine Tools and Manufacture, 2005, 45(4-5): 373-378. doi: 10.1016/j.ijmachtools.2004.09.015
    [21] WANG Y, YANG L, BAI B, et al. Evaluation of limit deformation behavior in hydro-bulging of the double-layer sheet metal using diffuse and localized instability theories[J]. International Journal of Mechanical Sciences, 2019, 150: 145-153. doi: 10.1016/j.ijmecsci.2018.10.027
    [22] CARVELLI V, PANZERI N, POGGI C. Buckling strength of GFRP under-water vehicles[J]. Composites Part B:Engineering, 2001, 32(2): 89-101. doi: 10.1016/S1359-8368(00)00063-9
    [23] ÖZBEK Ö. Axial and lateral buckling analysis of kevlar/epoxy fiber-reinforced composite laminates incorporating silica nanoparticles[J]. Polymer Composites, 2021, 42(3): 1109-1122. doi: 10.1002/pc.25886
    [24] DAVIES P, CHOQUEUSE D, BIGOURDAN B, et al. Composite cylinders for deep sea applications: An overview[J]. Journal of Pressure Vessel Technology, Transactions of the ASME, 2016, 138(6): 060904.
    [25] WEI R F, PAN G, JIANG J, et al. An efficient approach for stacking sequence optimization of symmetrical laminated composite cylindrical shells based on a genetic algorithm[J]. Thin-Walled Structures, 2019, 142: 160-170. doi: 10.1016/j.tws.2019.05.010
    [26] KARBHARI V M, SEIBLE F. Fiber reinforced composites - advanced materials for the renewal of civil infrastructure[J]. Applied Composite Materials, 2000, 7(2): 95-124.
    [27] CHOQUEUSE D, BIGOURDAN B, DEUFF A. Hydrostatic compression behaviour of steel-composite hybrid tubes[J]. ICCM International Conferences on Composite Materials, 2009.
    [28] ZUO X L, ZHANG J, TANG W X, et al. Buckling behavior of steel and steel – composite cylinders under external pressure[J]. Thin-Walled Structures, 2022, 181: 110011. doi: 10.1016/j.tws.2022.110011
    [29] HADI M N S. Helically reinforced HSC beams reinforced with high strength steel[J]. International Journal of Materials and Product Technology, 2005, 23(1-2): 138-148.
    [30] ELBASHA N M. Behaviour of over reinforced HSC helically confined beams[M]. 2005.
    [31] ZUO X L, TANG W X, ZHANG J, et al. Collapse of externally pressurized steel–composite hybrid cylinders: Analytical solution and experimental verification[J]. Metals, 2022, 12(10): 1591. doi: 10.3390/met12101591
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  215
  • HTML全文浏览量:  132
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-08
  • 修回日期:  2023-09-08
  • 录用日期:  2023-09-13
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2024-06-15

目录

    /

    返回文章
    返回