留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粉末烧结法和铸造法制备ZrO2增韧Al2O3陶瓷颗粒增强高铬铸铁基复合材料及其耐磨性能

高颖超 孙书刚 钱兵 汪兴兴 吕帅帅 朱昱 倪红军

高颖超, 孙书刚, 钱兵, 等. 粉末烧结法和铸造法制备ZrO2增韧Al2O3陶瓷颗粒增强高铬铸铁基复合材料及其耐磨性能[J]. 复合材料学报, 2021, 38(8): 2676-2683. doi: 10.13801/j.cnki.fhclxb.20201019.003
引用本文: 高颖超, 孙书刚, 钱兵, 等. 粉末烧结法和铸造法制备ZrO2增韧Al2O3陶瓷颗粒增强高铬铸铁基复合材料及其耐磨性能[J]. 复合材料学报, 2021, 38(8): 2676-2683. doi: 10.13801/j.cnki.fhclxb.20201019.003
GAO Yingchao, SUN Shugang, QIAN Bing, et al. Preparation and wear resistance of ZrO2 toughened Al2O3 ceramic particles reinforced high chromium cast iron matrix composites by powder sintering and casting[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2676-2683. doi: 10.13801/j.cnki.fhclxb.20201019.003
Citation: GAO Yingchao, SUN Shugang, QIAN Bing, et al. Preparation and wear resistance of ZrO2 toughened Al2O3 ceramic particles reinforced high chromium cast iron matrix composites by powder sintering and casting[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2676-2683. doi: 10.13801/j.cnki.fhclxb.20201019.003

粉末烧结法和铸造法制备ZrO2增韧Al2O3陶瓷颗粒增强高铬铸铁基复合材料及其耐磨性能

doi: 10.13801/j.cnki.fhclxb.20201019.003
基金项目: 江苏省重点研发计划项目(BE2016107);江苏高校优势学科建设工程资助项目(PAPD)
详细信息
    通讯作者:

    朱昱,硕士,教授,硕士生导师,研究方向为新材料及成型工艺  E-mail:zhu.y@ntu.edu.cn

    倪红军,博士,教授,硕士生导师,研究方向为有色金属材料 E-mail:ni.hj@ntu.edu.cn

  • 中图分类号: TB333

Preparation and wear resistance of ZrO2 toughened Al2O3 ceramic particles reinforced high chromium cast iron matrix composites by powder sintering and casting

  • 摘要: 将粒径为1~2 mm的ZrO2增韧Al2O3陶瓷颗粒(ZTAp)、高铬合金粉末和黏结剂混合真空烧结制备蜂窝状预制体,再浇注高铬铸铁液制备出ZTAp增强高铬铸铁基复合材料。采用SEM、EDS、XRD分析复合材料的界面微观结构和物相组成,通过三体磨损试验评价复合材料的耐磨性能。结果表明,烧结高铬铸铁基体在铸造过程中发生重熔,与铸造高铬铸铁基体呈冶金结合,ZTAp与金属基体界面结合致密,无裂纹、气孔等缺陷。复合材料三体耐磨性能达到高铬铸铁的3倍以上。将该复合材料应用于制备磨辊件,经过5 000 h服役,柱状区和复合区在磨辊半径方向上的磨损量分别为8.2 mm、5.9 mm,预计寿命可达到高铬铸铁磨辊的2倍以上。

     

  • 图  1  三体磨料磨损试验及试样示意图

    Figure  1.  Diagram of three-body abrasive wear test and sample

    图  2  预制体和ZTAp/HCCI复合材料宏观形貌

    Figure  2.  Macroscopic morphologies of prefabrications and ZTAp/HCCI composites

    图  3  ZTAp/HCCI复合材料金相组织 (a)、铸造与烧结HCCI基体界面 (b)和ZTAp与烧结HCCI基体界面 (c)

    Figure  3.  Metallographic structure of ZTAp/HCCI composites (a), interface between cast and sintered HCCI matrix (b) and interface between ZTAp and sintered HCCI matrix (c)

    图  4  ZTAp/HCCI复合材料XRD图谱

    Figure  4.  XRD pattern of ZTAp/HCCI composites

    图  5  ZTAp/HCCI复合材料界面元素分布

    Figure  5.  Element distribution at the interface of ZTAp/HCCI composites

    图  6  ZTAp/HCCI复合材料磨损试样图像处理

    Figure  6.  Image processing of wear ZTAp/HCCI composite samples

    图  7  ZTAp/HCCI复合材料与HCCI磨损体积损失

    Figure  7.  Volume loss of ZTAp/HCCI composites and HCCI

    图  8  ZTAp/HCCI复合材料试样磨损微观形貌

    Figure  8.  Micro morphologies of worn ZTAp/HCCI composite samples

    图  9  ZTAp/HCCI复合磨辊表面磨损形貌

    Figure  9.  Wear morphology of ZTAp/HCCI composite grinding roller

    图  10  HCCI磨辊表面磨损形貌

    Figure  10.  Wear morphology of HCCI grinding roller

    表  1  ZrO2增韧Al2O3陶瓷颗粒(ZTAp)物理/力学性能

    Table  1.   Physical and mechanical properties of ZrO2 toughened Al2O3 ceramic particles (ZTAp)

    MaterialDensity/
    (g·cm−3)
    Vickers
    hardness
    Coefficient of thermal
    expansion/10−6−1
    Fracture toughness/
    (MPa·m1/2)
    Flexural strength/
    MPa
    ZTAp4.61 800-2 1007.5-9.06.5-9.0350-550
    下载: 导出CSV

    表  2  高铬合金粉末化学成分

    Table  2.   Chemical compositions of high chromium cast iron alloy powder wt%

    ElementCCrSiMnNiVMoFe
    Content 3.2-3.5 26-28 0.7-1.0 1.1-1.4 2.3-2.5 0.2-0.3 0.4-0.6 Bal.
    下载: 导出CSV

    表  3  铸造渗高铬铸铁(HCCI)化学成分

    Table  3.   Chemical compositions of cast high chromium cast iron (HCCI) wt%

    ElementCCrSiMnNiMoCuFe
    Content 3.0-3.3 24-26 0.5-0.8 0.6-1.0 0.3-0.5 0.4-0.6 0.2-0.3 Bal.
    下载: 导出CSV
  • [1] 魏世忠, 徐流杰. 钢铁耐磨材料研究进展[J]. 金属学报, 2020, 56(4):523-538. doi: 10.11900/0412.1961.2019.00370

    WEI S Z, XIU L J. Review on research progress of steel and iron wear-resistant materials[J]. Acta Metallurgica Sinica,2020,56(4):523-538(in Chinese). doi: 10.11900/0412.1961.2019.00370
    [2] 钱兵, 孙书刚, 朱昱, 等. 中速磨煤机金属陶瓷复合磨辊及磨盘的研究[J]. 中国电力, 2014, 47(10):122-125.

    QIAN B, SUN S G, ZHU Y, et al. Development of ceramal compound grinding roller and refiner plate of medium speed mill[J]. Electric Power,2014,47(10):122-125(in Chinese).
    [3] OJALA N , VALTONEN K , ANTIKAINEN A, et al. Wear performance of quenched wear resistant steels in abrasive slurry erosion[J]. Wear,2016,354–355:21-31.
    [4] HU Y B, CONG W L. A review on laser deposition-additive manufacturing of ceramics and ceramic reinforced metal matrix composites[J]. Ceramics International,2018,44(17):20599-20612. doi: 10.1016/j.ceramint.2018.08.083
    [5] SAHOO B P, DAS D. Tribological behaviour of ceramic and carbon nano-tube reinforced metal matrix composites-A review[J]. Materials Today: Proceedings,2018,5(9):20549-20559. doi: 10.1016/j.matpr.2018.06.433
    [6] MONILA J M, NARCISO J, WEBER L, et al. Thermal con-ductivity of Al-SiC composites with monomodal and bimodal particle size distribution[J]. Materials Science and Engineering A,2008,480(1-2):483-488.
    [7] 周谟金, 蒋业华, 温放放. 热处理对高铬铸铁基蜂窝陶瓷复合材料耐磨性的影响[J]. 材料导报, 2017, 31(14):117-121. doi: 10.11896/j.issn.1005-023X.2017.014.025

    ZHOU M J, JIANG Y H, WEN F F. Effect of heat treatment on wear resistance of honeycomb ceramic preform reinforced chromium cast iron matrx composite[J]. Materials Reports,2017,31(14):117-121(in Chinese). doi: 10.11896/j.issn.1005-023X.2017.014.025
    [8] 王文龙, 刘海云, 王晓杰, 等. 浸渗法制备ZTA陶瓷/铁基复合材料研究进展[J]. 特种铸造及有色合金, 2020, 40(1):37-41.

    WANG W L, LIU H Y, WANG X J, et al. Research progress in ZTA ceramic/iron matrix composites prepared by infiltration method[J]. Special Casting & Nonferrous Alloys,2020,40(1):37-41(in Chinese).
    [9] 范瑞瑞, 张瑞, 李炎, 等. 粉末冶金法制备Al2O3颗粒增强Fe基复合材料[J]. 热加工工艺, 2011, 40(24):120-123. doi: 10.3969/j.issn.1001-3814.2011.24.038

    FAN R R, ZHANG R, LI Y, et al. Fabrication of Fe matrix composite reinforced with Al2O3 particles by powder metallurgical method[J]. Hot Working Technology,2011,40(24):120-123(in Chinese). doi: 10.3969/j.issn.1001-3814.2011.24.038
    [10] KONOPKA K, OLSZÓWKA-MYALSKA A, SZAFRAN M. Ceramic-metal composites with an interpenetrating network[J]. Materials Chemistry & Physics, 2003, 81(2-3): 329-332.
    [11] 郑开宏, 高义民, 陈亮, 等. 颗粒增强铁基复合材料的三体磨料磨损性能[J]. 摩擦学学报, 2012, 32(2):176-182.

    ZHENG K H, GAO Y M, CHEN L, et al. Three-body abrasive wear behavior of iron matrix composites reinforced with tungsten carbide particles[J]. Tribology,2012,32(2):176-182(in Chinese).
    [12] KIHARA M, OGATA T, NAKAMURA K, et al. Effect of Al2O3additions on mechanical properties and microstructure of Y-TZP[J]. Journal of the Ceramic Society of Japan,1988,96:635-642.
    [13] QIU B, XING S, DONG Q. Fabrication and wear behavior of ZTA particles reinforced iron matrix composite produced by flow mixing and pressure compositing[J]. Wear,2019,428-429:167-177. doi: 10.1016/j.wear.2019.03.013
    [14] Magotteaux International SA (BE). Cast parts with enhanced wear resistance: US, 7513295[P]. 2006-01-20.
    [15] 陈建, 潘复生. 合金元素影响铝/陶瓷界面润湿性的研究现状[J]. 兵器材料科学与工程, 1999(4):3-5. doi: 10.3969/j.issn.1004-244X.1999.04.001

    CHEN J, PAN F S. Research status of influence of alloying elements on wettability of Al/ceramic interface[J]. Ordnance Material Science and Engineering,1999(4):3-5(in Chinese). doi: 10.3969/j.issn.1004-244X.1999.04.001
    [16] WITTIG D, GLAUCHE A. ANEZIRIS C G, et al. Activated pressureless melt infiltration of zirconia-based metal matrix composites[J]. Materials Science and Engineering,2008,A488(1-2):580-585.
    [17] 孙书刚, 钱兵, 李小武, 等. ZTA颗粒增强高铬铸铁基复合材料制备及磨损性能研究[J]. 铸造技术, 2018, 39(8):1663-1666.

    SUN S G, QIAN B, LI X W, et al. Preparation and wear properties of ZTA particle reinforced high chromium cast iron matrix composites[J]. Foundry Technology,2018,39(8):1663-1666(in Chinese).
    [18] SOBOLEV A, MIRZOEV A. Structure and stability of (Cr, Fe)7C3 ternary carbides in solid and liquid state[J]. Journal of Alloys and Compounds,2019,804:566-572. doi: 10.1016/j.jallcom.2019.06.282
    [19] 肖平安, 肖璐琼, 顾景洪, 等. 15Cr系亚共晶高铬铸铁的烧结制备与性能研究[J]. 湖南大学学报(自然科学版), 2019, 46(12):58-64.

    XIAO P A, XIAO L Q, GU J H, et al. Study on sintering preparation and properties of 15Cr hypoeutectic high-chromium cast iron[J]. Journal of Hu'nan University (Natural Sciences),2019,46(12):58-64(in Chinese).
    [20] BAJWA R S, KHAN Z, BAKOLAS V, et al. Water-lubricated Ni-based composite(Ni-Al2O3, Ni-SiC and Ni-ZrO2) thin film coatings for industrial applications[J]. Acta Metallurgica Sinica,2016,29(1):1-9.
    [21] 贾建民, 齐纪渝, 谢敬学. MPS 中速磨煤机磨辊磨损机理研究[J]. 华北电力大学学报, 1998, 25(4):88-91.

    JIA J M, QI J Y, XIE J X. Research on wear mechanism of MPS type mill roll[J]. Journal of North China Electric Power University,1998,25(4):88-91(in Chinese).
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  1212
  • HTML全文浏览量:  596
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-24
  • 录用日期:  2020-10-10
  • 网络出版日期:  2020-10-20
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回