留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ag量子点协同四环素的抑菌及其机制研究

郭少波 陈惠惠 刘珂 胡瑞玲 王嘉伟 余凡 刘智峰 史娟 郭婷 季晓晖 张田雷

郭少波, 陈惠惠, 刘珂, 等. Ag量子点协同四环素的抑菌及其机制研究[J]. 复合材料学报, 2024, 42(0): 1-13.
引用本文: 郭少波, 陈惠惠, 刘珂, 等. Ag量子点协同四环素的抑菌及其机制研究[J]. 复合材料学报, 2024, 42(0): 1-13.
GUO Shaobo, CHEN Huihui, LIU Ke, et al. Bacteriostatic performance and mechanism of Ag quantum dots synergistic tetracycline[J]. Acta Materiae Compositae Sinica.
Citation: GUO Shaobo, CHEN Huihui, LIU Ke, et al. Bacteriostatic performance and mechanism of Ag quantum dots synergistic tetracycline[J]. Acta Materiae Compositae Sinica.

Ag量子点协同四环素的抑菌及其机制研究

基金项目: 秦巴生物资源与生态环境国家重点实验室科研基金( SXS-2105 ),陕西省教育厅项目(22JK-0317),陕西省自然科学基金(2023-JC-QN-0162, 2023-YBSF-334)和陕西理工大学基础研究基金(SLGKYXM2208)
详细信息
    通讯作者:

    郭少波,副教授,研究方向为抑菌材料 E-mail:545366954@qq.com

  • 中图分类号: X524;TB332

Bacteriostatic performance and mechanism of Ag quantum dots synergistic tetracycline

Funds: Scientific Research Fund of the State Key Laboratory of Biological Resources and Ecological Environment of Qinba (SXS-2105), Project of Shaanxi Provincial Department of Education (22JK-0317), Shaanxi Provincial Natural Science Foundation (2023-JC-QN-0162, 2023-YBSF-334), and Fundamental Research Fund of Shaanxi University of Science and Technology (SLGKYXM2208)
  • 摘要: 四环素类抗生素因具有高效、低毒、广谱抑菌性等优点而被广泛使用,但随着抗生素的滥用致使大量的耐药菌出现,使四环素类抗生素的药用价值逐渐降低。超小粒径的纳米Ag虽可使细菌甚至耐药菌失活,但单独使用毒性较强,且易团聚。为此,本研究利用Ag的d轨道为满电子结构,可与供电子基团配位的原理,设计了核壳型介孔Fe3O4@SiO2@mTiO2@Ag-四环素(FSmTA-T)复合材料用以解决抗生素耐药和纳米Ag团聚、强毒性问题。研究结果显示,制备的复合材料中纳米Ag量子点的粒径约为2.84 nm,可与四环素环3中的羰基键合,同时,相比四环素,复合材料对大肠杆菌,金黄色葡萄球菌,耐四环素沙门氏菌和白色念珠菌均具有较高的抑菌活性,并可有效破坏细菌细胞壁而使其死亡,且对哺乳细胞的毒性降低为原来的1/3。因此,其优越的抑菌活性可应用于污水处理领域。

     

  • 图  1  Fe3O4@SiO2@mTiO2@Ag-四环素(FSmTA-T)的制备原理示意图

    Figure  1.  Schematic diagram of the preparation principle of the Fe3O4@SiO2@mTiO2@Ag-tetracycline (FSmTA-T)

    图  2  F(a)、FS (b)、FST (c)、FSmT (d)、FSmTA-T (e)和Ag (f)的TEM图

    Figure  2.  TEM image of F (a),FS (b),FST (c),FSmT (d),FSmTA-T (e) and Ag

    图  3  (a)为Ag量子点的粒径分布,(b)是EDX分析结果,(c)和(d)为XRD和VSM分析结果,(e)是不同样品的紫外分析结果,(f)是FSmTA-T的XPS全谱

    Figure  3.  The particle size distribution of Ag quantum dots (a), EDX spectrum result (b), XRD (c) and VSM (d) spectrum, UV absorption spectra of different samples (e), XPS spectrum of the FSmTA-T (f)

    图  4  (a-f)依次为C 1s, Fe 2p, N 1s, O 1s, Si 2p和Ti 2p的XPS图谱

    Figure  4.  XPS spectra of C 1s (a), Fe 2p (b), N 1s (c), O 1s (d), Si 2p (e) and Ti 2p (f)

    图  5  (a)为 Ag XPS图谱,(b)、(c)为材料的Zeta和FT-IR谱图结果,(d)、(e)为Ag量子点结合T的MS计算和对应的数据分析

    Figure  5.  XPS spectra of Ag 3 d (a), the Zeta (b) and FT-IR (c) spectra of different materials, MS theoretical calculation results of the Ag quantum dot bonding T (d) and corresponding data (e)

    图  6  (a-d)是FSmTA-T对E. coliS. aureusT-SalmC. albicans的最小抑菌浓度测试照片

    Figure  6.  MIC test photos of FSmTA-T on E. coli (a), S. aureus (b), T-Salm (c) and C. albicans (d)

    图  7  (a-d)是不同材料对E. coliS. aureusT-SalmC. albicans的滤纸片扩散照片,O为对照,A,B,C和D依次为Ag、T、FSmTA和FSmTA-T

    Figure  7.  Paper diffusion photos of of different samples on E. coli (a), S. aureus (b), T-Salm (c) and C. albicans (d). O is the control, A, B, C and D are Ag、T、FSmTA and FSmTA-T, respectively

    a1~e1: 25 µg/mL; a2~e2: 50 µg/mL; a3~e3: 100 µg/mL; a4~e4: 150 µg/mL; a5~e5: 200 µg/mL

    图  8  (a-d)是FSmTA-T对E. coliS. aureusT-SalmC. albicans的菌落计数实验结果,O为对照,A,B,C和D依次为10、20、30和40 min

    Figure  8.  Photographs of the results of colony counting experiments of FSmTA-T on E. coli (a), S. aureus (b), T-Salm (c) and C. albicans (d). O is the control, A, B, C and D are 10、20、30 and 40 min

    图  9  (a)为MIC抑菌数据结果,(b-e)为材料对E. coliS. aureusT-SalmC. albicans滤纸片扩散分析结果数据,(f)为 FSmTA-T对菌的菌落计数分析结果

    Figure  9.  Antibacterial data results of MIC (a),The results of filter paper diffusion analysis of E. coli (b), S. aureus (c), T-Salm (d) and C. albicans (d) by materials. The FSmTA-T on bacterial colony count analysis data results (f)

    图  10  (a1-a4),(b1-b4)分别为FSmTA-T对E. coliS. aureusT-SalmC. albicans 的PI染色结果,(c)为Zeta电势分析结果,(d)为GDC-0941、T、Ag和FSmTA-T对MCF-7细胞活力的影响

    Figure  10.  PI staining analysis of FSmTA-T on E. coli (a1, b1), S. aureus (a2, b2), T-salm (a3, b3) and C. albican (a4, b4). Zeta potential analysis results (c). Viability of MCF-7 cells exposed to GDC-0941, T, Ag and FSmTA-T (d)

    图  11  FSmTA-T对E. coliS. aureusT-SalmC. albicans的核酸泄露(a-d)分析结果

    Figure  11.  DNA leakage analysis of FSmTA-T on E. coli (a), S. aureus (b), T-Salm (c) and C. albicans (d)

    图  12  (a-d)是FSmTA-T对E. coliS. aureusT-SalmC. albicans的微量热分析

    Figure  12.  Microcalorimetric analysis of E. coli (a), S. aureus (b), T-Salm (c) and C. albicans (d)

    图  13  FSmTA-T的抑菌机制

    Figure  13.  Bacterial inhibition mechanism of the FSmTA-T

  • [1] WANG Y F, WANG C H, YAN S, et al. The removal of antibiotic, antibiotic resistant bacteria and genes in persulfate oxidation system via activating by antibiotic fermentation dregs derived biochar[J]. Journal of Cleaner Production, 2023, 394: 136328. doi: 10.1016/j.jclepro.2023.136328
    [2] WANG J Q, XU S Q, ZhAO K, et al. Risk control of antibiotics, antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) during sewage sludge treatment and disposal: A review[J]. Science of The Total Environment, 2023, 877: 162772. doi: 10.1016/j.scitotenv.2023.162772
    [3] FANG H, LIU Y H, QIU P X, et al. Simultaneous removal of antibiotic resistant bacteria and antibiotic resistance genes by molybdenum carbide assisted electrochemical disinfection[J]. Journal of Hazardous Materials, 2022, 432: 128733. doi: 10.1016/j.jhazmat.2022.128733
    [4] ZHANG Z Q, XU Z N, WANG X G. The greenhouse effect of antibiotics: The influence pathways of antibiotics on methane release from freshwater sediment[J]. Environment International, 2023, 176: 107964. doi: 10.1016/j.envint.2023.107964
    [5] WANG S, HE L, ZHANG M Y, et al. Effects of antibiotic resistance genes and antibiotics on the transport and deposition behaviors of bacteria in porous media[J]. Environmental Science & Technology, 2023, 57(28): 10426-10437.
    [6] YA H B, ZHANG T, XING Y, et al. Co-existence of polyethylene microplastics and tetracycline on soil microbial community and ARGs[J]. Chemosphere, 2023, 335: 139082. doi: 10.1016/j.chemosphere.2023.139082
    [7] WANG Q D, XU Q Y, ZHAI S Y, et al. Understanding the coordination behavior of antibiotics: Take tetracycline as an example[J]. Journal of Hazardous Materials, 2023, 460: 132375. doi: 10.1016/j.jhazmat.2023.132375
    [8] WU X W, ZHAO X L, WANG X, et al. Bioaccessibility of polypropylene microfiber-associated tetracycline and ciprofloxacin in simulated human gastrointestinal fluids[J]. Environment International, 2023, 179: 108193. doi: 10.1016/j.envint.2023.108193
    [9] OSORIO V, MEZQUITA A S, BALCAZAR J L. Comparative metagenomics reveals poultry and swine farming are hotspots for multidrug and tetracycline resistance[J]. Environmental Pollution, 2023, 322: 121239. doi: 10.1016/j.envpol.2023.121239
    [10] MA X Q, WEN X, YANG D Q, et al. Collateral sensitivity between tetracyclines and aminoglycosides constrains resistance evolution in carbapenem-resistant Klebsiella pneumoniae[J]. Drug Resistance Updates, 2023, 68: 100961. doi: 10.1016/j.drup.2023.100961
    [11] LI H B, FAN Y F, SUN Z L, et al. Abrading-induced breakdown of Ag nanoparticles into atomically dispersed Ag for enhancing antimicrobial performance[J]. Environmental Science & Technology 2023, 57(15): 6150-6158.
    [12] WANG C Y, ZHU S L, LIANG Y Q, et al. Flexible free-standing antibacterial nanoporous Ag ribbon[J]. Journal of Colloid and Interface Science, 2023, 645: 287-296. doi: 10.1016/j.jcis.2023.04.153
    [13] SUN X D, PAN W H, WANG G, et al. Ag nanoparticle and Ti–MOF cooperativity for efficient inactivation of E. coli in Water[J]. ACS Applied Materials & Interfaces, 2023, 15(37): 43712-43723.
    [14] ZHANG J, SINGH P, CAO Z J, et al. Polydopamine/graphene oxide coatings loaded with tetracycline and green Ag nanoparticles for effective prevention of biofilms[J]. Applied Surface Science, 2023, 626: 157221. doi: 10.1016/j.apsusc.2023.157221
    [15] YAN J H, WANG Q F, YANG J L, et al. Chemical Synthesis of Innovative Silver Nanohybrids with Synergistically Improved Antimicrobial Properties[J]. International Journal of Nanomedicine, 2023, 18: 2295-2305. doi: 10.2147/IJN.S405255
    [16] SHI J, ZHENG J L, LIANG B, et al. Silver-decorated amino-modified Fe3O4@SiO2@mTiO2 core-shell nanocomposites with catalytic and antimicrobial bifunctional activity[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023, 668: 131402. doi: 10.1016/j.colsurfa.2023.131402
    [17] JI X H, WU Y H, HAN Y Y, et al. Synergistic antibacterial study of nano-Cu2O/CuO@Ag-tetracycline composites[J]. Materials Chemistry and Physics, 2023, 306: 127904. doi: 10.1016/j.matchemphys.2023.127904
    [18] ZHOU Z B, XIAO J W, HUANG S, et al. A wet-adhesive carboxymethylated yeast β-glucan sponge with radical scavenging, bacteriostasis and anti-inflammatory functions for rapid hemostasis[J]. International Journal of Biological Macromolecules, 2023, 230: 123158. doi: 10.1016/j.ijbiomac.2023.123158
    [19] JIN Y Y, WANG C, XIA Z Y, et al. Photodynamic chitosan sponges with dual instant and enduring bactericidal potency for treating skin abscesses[J]. Carbo hydrate Polymers, 2023, 306: 120589. doi: 10.1016/j.carbpol.2023.120589
    [20] CUI J Y, WAN M H, WANG Z H, et al. Preparation of PAN/SiO2/CTAB electrospun nanofibrous membranes for highly efficient air filtration and sterilization[J]. Separation and Purification Technology, 2023, 321: 124270. doi: 10.1016/j.seppur.2023.124270
    [21] ONG T H D, Yu N, MEENASHISUNDARAM G K, et al. Insight into cytotoxicity of Mg nanocomposites using MTT assay technique[J]. Materials Science and Engineering:C, 2017, 78: 647-652. doi: 10.1016/j.msec.2017.04.129
    [22] LU J, ZHOU Y, ZHOU Y B. Efficiently activate peroxymonosulfate by Fe3O4@MoS2 for rapid degradation of sulfonamides[J]. Chemical Engineering Journal, 2021, 422: 130126. doi: 10.1016/j.cej.2021.130126
    [23] WANG L, SAGAGUCHI T, OKUHATA T, et al. Electron and phonon dynamics in hexagonal Pd nanosheets and Ag/Pd/Ag sandwich nanoplates[J]. ACS Nano, 2017, 11(2): 1180-1188. doi: 10.1021/acsnano.6b07082
    [24] WOOLSTON B M. , STEPHANOPOULOS G. Engineering E. coli to grow on methanol[J]. Joule, 2020, 4(10): 2070-2072. doi: 10.1016/j.joule.2020.09.019
    [25] GREENHILL C. Role for S. aureus in insulin resistance[J]. Nature Reviews Endocrinology, 2018, 14: 381.
    [26] CHIN Voon, LEE T, RUSLIZA B, et al. Dissecting Candida albicans infection from the perspective of C. albicans virulence and omics approaches on host–pathogen interaction: A review[J]. International Journal of Molecular Sciences, 2016, 17(10): 1643. doi: 10.3390/ijms17101643
    [27] QIAN L W, LEI D, DUAN X, et al. Design and preparation of metal-organic framework papers with enhanced mechanical properties and good antibacterial capacity[J]. Carbohydrate Polymers, 2018, 192: 44-51. doi: 10.1016/j.carbpol.2018.03.049
    [28] XU X, LI Y L, WANG L X, et al. Triple-functional polyetheretherketone surface with enhanced bacteriostasis and anti-inflammatory and osseointegrative properties for implant application[J]. Biomaterials, 2019, 212: 98-114. doi: 10.1016/j.biomaterials.2019.05.014
    [29] MALGORZATA O R, WALDEMAR P, AGNIESZKA O S. Tetracyclines-an important therapeutic tool for dermatologists[J]. International Journal of Environmental Research and Public Health, 2022, 19(12): 7246. doi: 10.3390/ijerph19127246
  • 加载中
计量
  • 文章访问数:  72
  • HTML全文浏览量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-06
  • 修回日期:  2023-12-10
  • 录用日期:  2023-12-23
  • 网络出版日期:  2024-01-21

目录

    /

    返回文章
    返回