留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种预测复合材料棘轮行为的循环塑性-损伤模型

成磊 肖毅 王杰 薛元德

成磊, 肖毅, 王杰, 等. 一种预测复合材料棘轮行为的循环塑性-损伤模型[J]. 复合材料学报, 2021, 38(10): 3338-3350. doi: 10.13801/j.cnki.fhclxb.20210115.002
引用本文: 成磊, 肖毅, 王杰, 等. 一种预测复合材料棘轮行为的循环塑性-损伤模型[J]. 复合材料学报, 2021, 38(10): 3338-3350. doi: 10.13801/j.cnki.fhclxb.20210115.002
CHENG Lei, XIAO Yi, WANG Jie, et al. A cyclic plasticity-damage model for predicting ratcheting behavior of composite materials[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3338-3350. doi: 10.13801/j.cnki.fhclxb.20210115.002
Citation: CHENG Lei, XIAO Yi, WANG Jie, et al. A cyclic plasticity-damage model for predicting ratcheting behavior of composite materials[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3338-3350. doi: 10.13801/j.cnki.fhclxb.20210115.002

一种预测复合材料棘轮行为的循环塑性-损伤模型

doi: 10.13801/j.cnki.fhclxb.20210115.002
基金项目: 国家自然科学基金 (52078362)
详细信息
    通讯作者:

    肖毅,教授,博士生导师,研究方向为复合材料力学、结构强度分析与设计  E-mail:y_xiao@tongji.edu.cn

  • 中图分类号: TB330.1

A cyclic plasticity-damage model for predicting ratcheting behavior of composite materials

  • 摘要: 构建循环塑性本构模型并揭示其微观机制,目前仍然是复合材料力学研究富有挑战性的课题。本文提出了一种循环塑性-损伤模型,用以预测在循环载荷作用下纤维增强复合材料的应力-应变响应。该模型是在作者前期提出的描述非线性滞后行为的弹塑性本构模型的基础上的进一步扩展。它可以预测加载时的非线性响应、卸载和重加载时的迟滞行为及大量循环下的棘轮现象。作为基准问题验证,将Kawai等的实验数据与本文模型的数值预测进行了比较。结果表明,该模型能够模拟碳纤维/环氧树脂单向复合材料在偏轴循环加载下的棘轮行为。

     

  • 图  1  单向纤维增强聚合物复合材料(FRP)在偏轴循环载荷下应力-应变曲线的典型特征

    Figure  1.  Typical features of stress-strain curves for unidirectional fiber reinforced polymer (FRP) laminates under off-axis cycle loading

    σmax—Maximum stress; ε, εe, εp, εan, εr, εan*—Total, elastic, plastic, anelastic, ratcheting and sum of anelastic and ratcheting strain; F(n)—Fatigue modulus

    图  2  循环过程中迟滞回环的不同演化

    Figure  2.  Different evolution of hysteresis loops during cyclic loading

    图  3  T700S碳纤维/环氧树脂复合材料的初始加载与迟滞环参数确定[25-26]

    Figure  3.  Parameters identification of initial loading and hysteresis loop for T700S carbon fiber/epoxy composites[25-26]

    图  4  计算与测试出的T700S/环氧树脂复合材料的迟滞回环响应(30°试件)[25-26]

    Figure  4.  Calculated and measured hysteresis loop response of T700S/epoxy unidirectional laminates (30°)[25-26]

    图  5  计算与测试出的T700S/环氧树脂复合材料的迟滞回环响应(45°试件)[25-26]

    Figure  5.  Calculated and measured hysteresis loop response of T700S/epoxy unidirectional laminates (45°)[25-26]

    图  6  计算与测试出的T700S/环氧树脂复合材料的迟滞回环响应(45°试件)[25-26]

    Figure  6.  Calculated and measured hysteresis loop response of T700S/epoxy unidirectional laminates (45°)[25-26]

    图  7  计算和测试出的T700S/环氧树脂复合材料棘轮应变-循环周次曲线[25-26]

    Figure  7.  Calculated and measured ratcheting strain-cycle curves of T700S/epoxy unidirectional laminates[25-26]

    图  A-1  T300碳纤维/环氧树脂复合材料的疲劳累积损伤参数确定[32-33]

    Figure  A-1.  Determination of progressive fatigue damage parameters of T300 carbon fiber/epoxy composites[32-33]

    表  1  碳纤维/环氧树脂复合材料性能和模型参数(70 ℃)

    Table  1.   Properties and model parameters of carbon fiber/epoxy composites (70℃)

    Material propertyModel parameter
    Cycle plasticFatigue damage
    E1/GPa 124 a66 1.8 λ22 1.62
    E2/GPa 7.93 Ap 6.35×10−13 γ22 0.21
    G12/GPa 3.74 Aan 4.62×10−13 λ12 0.70
    μ12 0.35 n 5.853 γ12 7.10
    YT/MPa 33.4 μ 0.10142 A22 0.787
    *YC/MPa 123 m 1 B22 0.244
    S12/MPa 24.1 σ0 22.9 A12 −0.124
    w0 0.40 B12 0.251
    Notes:E1—Longitudinal modulus; E2—Transverse modulus; G12—Shear modulus; u12—Poisson’s ratio; YT—Transverse tensile strength; *YC—Transverse compress strength, from the data of our research group; S12—Shear strength;
    a66—Shear/transverse plasticity ratio; Ap, Aan,n—Plasticity and anelasticity during initial loading; μ, m, σ0, w0—Hysteresis loop;
    λ22, γ22—Transverse fatigue modulus degradation; λ12, γ12—In-plane shear fatigue modulus degradation; A22, B22—Transverse fatigue life; A12,B12—In-plane shear fatigue life.
    下载: 导出CSV
  • [1] 罗祖道, 王震鸣. 复合材料力学进展[M]. 北京: 北京大学出版社, 1992.

    LUO Z D, WANG Z M. Progress in composite material mechanics[M]. Beijing: Peking University Press, 1992(in Chinese).
    [2] FALLAHI H, TAHERI-BEHROOZ F, ASADI A. Nonlinear mechanical response of polymer matrix composites: A review[J]. Polymer Reviews,2020,60(1):42-85. doi: 10.1080/15583724.2019.1656236
    [3] KAWAI M, ZHANG J Q, XIAO Y, et al. Modeling of tension-compression asymmetry in off-axis nonlinear rate-dependent behavior of unidirectional carbon/epoxy composites[J]. Journal of Composite Materials, 2010, 44(1): 75-94.
    [4] WANG J, XIAO Y. Some improvements on Sun–Chen’s one-parameter plasticity model for fibrous composites-Part I: Constitutive modelling for tension-compression asymmetry response[J]. Journal of Composite Materials,2017,51(3):405-418. doi: 10.1177/0021998316644853
    [5] WANG J, XIAO Y, KAWAI M. Parameter identification problem in one-parameter plasticity model for fibrous compo-sites[J]. Advanced Composite Materials,2019,28:29-51.
    [6] DROZDOV A D. Cyclic thermo-viscoplasticity of high density polyethylene[J]. International Journal of Solids and Structures,2010,47(11-12):1592-1602. doi: 10.1016/j.ijsolstr.2010.02.021
    [7] WANG J, XIAO Y, INOUE K, et al. Modeling of nonlinear response in loading-unloading tests for fibrous composites under tension and compression[J]. Composite Structures,2019,207:894-908. doi: 10.1016/j.compstruct.2018.09.054
    [8] 薛康, 肖毅, 王杰, 等. 单向纤维增强聚合物复合材料压缩渐进破坏[J]. 复合材料学报, 2019, 36(6):1398-1412.

    XUE K, XIAO Y, WANG J, et al. Compression progressive failure of unidirectional fiber reinforced polymer compo-sites[J]. Acta Materiae Compositae Sinica,2019,36(6):1398-1412(in Chinese).
    [9] LV J X, XIAO Y, ZHOU Y, et al. Characterization and modeling of the creep behavior of fiber composites with tension and compression asymmetry[J]. International Journal of Mechanical Sciences,2020,170:105340. doi: 10.1016/j.ijmecsci.2019.105340
    [10] OHNO N. Recent topics in constitutive modeling of cyclic plasticity and viscoplasticity[J]. Applied Mechanics Reviews, 1990, 43(11): 283-295.
    [11] OHNO N. Recent progress in constitutive modeling for ratchetting[J]. Journal of the Society of Materials Science Japan,1997,46(3Appendix):1-9. doi: 10.2472/jsms.46.3Appendix_1
    [12] 陈旭, 焦荣, 田涛. 棘轮效应预测及其循环本构模型研究进展[J]. 力学进展, 2003, 33(4):461-470. doi: 10.3321/j.issn:1000-0992.2003.04.003

    CHEN X, JIAO R, TIAN T. Research advances of ratcheting effects and cyclic constitutive models[J]. Advances in Mechanics,2003,33(4):461-470(in Chinese). doi: 10.3321/j.issn:1000-0992.2003.04.003
    [13] KANG G Z. Ratchetting: Recent progresses in phenomenon observation, constitutive modeling and application[J]. International Journal of Fatigue,2008,30(8):1448-1472. doi: 10.1016/j.ijfatigue.2007.10.002
    [14] FREDERICK C O, ARMSRRONG P J. A mathematical representation of the multiaxial Bauschinger effect[J]. High Temperature Technology, 1998, 24(1): 1-26.
    [15] BOWER A F. Cyclic hardening properties of hard-drawn copper and rail steel[J]. Journal of the Mechanics and Physics of Solids,1989,37(4):455-470. doi: 10.1016/0022-5096(89)90024-0
    [16] CHABOCHE J L. On some modifications of kinematic hardening to improve the description of ratchetting effects[J]. International Journal of Plasticity,1991,7(7):661-678. doi: 10.1016/0749-6419(91)90050-9
    [17] OHNO N, WANG J D. Kinematic hardening rules with critical state of dynamic recovery, Part I: Formulation and basic features for ratchetting behavior[J]. International Journal of Plasticity,1993,9(3):375-390. doi: 10.1016/0749-6419(93)90042-O
    [18] OHNO N, WANG J D. Kinematic hardening rules with critical state of dynamic recovery, Part II: Application to experiments of ratchetting behavior[J]. International Journal of Plasticity,1993,9(3):391-403. doi: 10.1016/0749-6419(93)90043-P
    [19] JIANG Y, SEHITOGLU H. Multiaxial cyclic ratchetting under multiple step loading[J]. International Journal of Plasticity,1994,10(8):849-870. doi: 10.1016/0749-6419(94)90017-5
    [20] KANG G Z, GUO S, DONG C. Numerical simulation for uniaxial cyclic deformation of discontinuously reinforced metal matrix composites[J]. Materials Science & Engineering A,2006,426(1-2):66-76.
    [21] VOYIADJIS G Z, THIAGARAJAN G. A cyclic anisotropic-plasticity model for metal matrix composites[J]. International Journal of Plasticity,1995,12(1):69-91.
    [22] 王艳锋, 康国政, 刘宇杰, 等. 玻璃长纤维增强树脂基复合材料的单轴时间相关棘轮行为实验研究[J]. 复合材料学报, 2009, 26(6):161-166. doi: 10.3321/j.issn:1000-3851.2009.06.027

    WANG Y F, KANG G Z, LIU Y J, et al. Experimental study on uniaxial time-dependent ratcheting of continuous glass fiber reinforced polymer composites[J]. Acta Materiae Compositae Sinica,2009,26(6):161-166(in Chinese). doi: 10.3321/j.issn:1000-3851.2009.06.027
    [23] 刘煦, 朱志武, 康国政, 等. 碳纤维增强 PEEK 树脂基复合材料的单轴时相关循环特性实验研究[J]. 复合材料学报, 2012, 29(1):28-34.

    LIU X, ZHU Z W, KANG G Z, et al. Experimental study on uniaxial time-dependent cyclic character of carbon fiber reinforced PEEK resin matrix composite[J]. Acta Materiae Compositae Sinica,2012,29(1):28-34(in Chinese).
    [24] SAKAI M, UDA N, KUNOO K. Experimental observation on low cycle fatigue behavior of symmetric angle-ply CFRP laminate[J]. Journal of the Japan Society for Aeronautical and Space Sciences, 2006, 54(635): 555-562
    [25] KAWAI M, KIGURE T, SUZUKI T. Off-axis ratcheting behavior of unidirectional CFRP laminate at high temperature and its phenomenological modeling[J]. Journal of the Japan Society for Composite Materials, 2011, 37(2): 46-57.
    [26] SUZUKI T, KAWAI M. Off-axis ratcheting behavior of unidirectional carbon/epoxy laminate under asymmetric cyclic loading at high temperature[C]// Proceedings of the 12th Japan International SAMPE Symposium & Exhibition (JISSE-12), Tokyo, 2011.
    [27] RUI Y, SUN C T. Cyclic plasticity in AS4/PEEK composite laminates[J]. Journal of Thermoplastic Composite Materials,1993,6(4):312-322.
    [28] ZHU C, SUN C T. Micromechanical characterization of cyclic plasticity of IM7/5260 composite at various temperatures[J]. Journal of Reinforced Plastics and Composites,1998,17(3):184-204. doi: 10.1177/073168449801700301
    [29] ZHU C, SUN C T. A viscoplasticity model for characterizing loading and unloading behavior of polymeric composites[M]//Time dependent and nonlinear effects in polymers and composites. West Conshohocken: ASTM International, 2000.
    [30] SHOKRIEH M M, LESSARD L B. Multiaxial fatigue behaviour of unidirectional plies based on uniaxial fatigue experiments I—Modelling[J]. International Journal of Fatigue, 1997, 19(3): 201-207.
    [31] LEE L J, YANG J N, SHEU D Y. Prediction of fatigue life for matrix-dominated composite laminates[J]. Composites Science and Technology,1993,46(1):21-28. doi: 10.1016/0266-3538(93)90077-T
    [32] 沈媛臻, 肖毅. 微动损伤对复合材料螺栓连接预紧力松弛的影响[J]. 复合材料学报, 2019, 36(2):400-409.

    SHEN Y Z, XIAO Y. Effects of fretting damage on pre load relaxation in bolted composite joints[J]. Acta Materiae Composite Sinica,2019,36(2):400-409(in Chinese).
    [33] 成磊. 复合材料疲劳损伤的定量评估[D]. 上海: 同济大学, 2018.

    CHENG L. Quantitative assessment on fatigue damage of composite materials[D]. Shanghai: Tongji University, 2018(in Chinese).
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1163
  • HTML全文浏览量:  675
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-13
  • 录用日期:  2021-01-02
  • 网络出版日期:  2021-01-15
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回