留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高抗菌聚乳酸纳纤膜制备及其高效低阻滤除细微颗粒物性能

李峰 江亮 李晓鹏 唐梦珂 黄荣廷 朱金佗 何新建 李和国 徐欢

李峰, 江亮, 李晓鹏, 等. 高抗菌聚乳酸纳纤膜制备及其高效低阻滤除细微颗粒物性能[J]. 复合材料学报, 2024, 41(6): 3206-3218. doi: 10.13801/j.cnki.fhclxb.20231031.002
引用本文: 李峰, 江亮, 李晓鹏, 等. 高抗菌聚乳酸纳纤膜制备及其高效低阻滤除细微颗粒物性能[J]. 复合材料学报, 2024, 41(6): 3206-3218. doi: 10.13801/j.cnki.fhclxb.20231031.002
LI Feng, JIANG Liang, LI Xiaopeng, et al. Ecofriendly and antibacterial poly(lactic acid) nanofibrous membranes forhigh-efficiency and low-resistance filtration of airborne particulate matters[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3206-3218. doi: 10.13801/j.cnki.fhclxb.20231031.002
Citation: LI Feng, JIANG Liang, LI Xiaopeng, et al. Ecofriendly and antibacterial poly(lactic acid) nanofibrous membranes forhigh-efficiency and low-resistance filtration of airborne particulate matters[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3206-3218. doi: 10.13801/j.cnki.fhclxb.20231031.002

高抗菌聚乳酸纳纤膜制备及其高效低阻滤除细微颗粒物性能

doi: 10.13801/j.cnki.fhclxb.20231031.002
基金项目: 国家自然科学基金(52003292;52174222);江苏省自然科学基金(BK20200661)
详细信息
    通讯作者:

    徐欢,博士,副教授,硕士研究生导师,研究方向为可降解高分子材料 E-mail: hihuan@cumt.edu.cn

  • 中图分类号: TB332

Ecofriendly and antibacterial poly(lactic acid) nanofibrous membranes forhigh-efficiency and low-resistance filtration of airborne particulate matters

Funds: National Natural Science Foundation of China (52003292; 52174222); Natural Science Foundation of Jiangsu Province (BK20200661)
  • 摘要: 工业生产过程中所产生的细微颗粒物(PMs)对人体健康构成了严重威胁,是引起工作职业病的主要危害之一。当下传统面罩过滤效果不佳、呼吸阻力高、容尘量低、不易降解及抗菌效果不明显,为此,开发了一种环境友好型高效低阻的聚乳酸(PLA)抗菌可降解纳米过滤膜。通过微波辅助合成方法在碳纳米管(CNT)上诱导沸石咪唑酯框架-8 (ZIF-8)生长,成功合成了结构规整、比表面积大的纳米杂化结构CNT@ZIF-8。基于静电纺-电喷技术将CNT@ZIF-8成功嵌入到PLA纤维上,通过调控CNT@ZIF-8的质量分数,制备了不同纤维直径的聚乳酸复合纳纤膜(CNT@ZIF/PLA),探讨了在不同流速下CNT@ZIF/PLA纳纤膜的过滤性能以及空气阻力,系统研究了不同CNT@ZIF-8质量分数对纳纤膜力学性能以及抗菌性能的影响。结果表明:CNT@ZIF/PLA纳纤膜相较于Pure PLA纳纤膜拉伸强度最高增幅达47% (18.5 MPa),断裂韧性提升100% (2.9 MJ/m3)。随着CNT@ZIF-8质量分数的增加,空气阻力逐渐降低,当测试流速在32 L/min时,12wt%CNT@ZIF/PLA纳纤膜的空气阻力仅为78.7 Pa,较Pure PLA纳纤膜减小了40.8%,且经过180 min长时间过滤测试,对PMs的过滤效率无明显变化。在测试流速在85 L/min时,CNT@ZIF/PLA纳纤膜对PM0.3的过滤效率均高达89%以上。并且经过太阳光模拟器照射5 min后,对大肠杆菌与金黄色葡萄球菌抗菌效率均达到100%。

     

  • 图  1  碳纳米管(CNT)@沸石咪唑酯框架-8 (ZIF-8)/聚乳酸(PLA)纳纤膜示意图

    Figure  1.  Schematic diagram of carbon nanotubes (CNT)@zeolitic imidazolium ester framework-8 (ZIF-8)/poly(lactic acid) (PLA) nanofibrous membranes

    PMs—Particulate matters

    图  2  PMs滤除效果评价的空气过滤性能测试装置示意图

    Figure  2.  Schematic diagram of air filtration performance test device for PMs filtration effect evaluation

    图  3  (a) CNT@ZIF-8粉末;(b) CNT@ZIF-8纳米杂化结构SEM图像;(c) CNT@ZIF-8与ZIF-8的XRD图谱;(d) CNT@ZIF-8与ZIF-8的FTIR图谱

    Figure  3.  (a) CNT@ZIF-8 powder; (b) SEM images of CNT@ZIF-8 nanohybrid structure; (c) XRD patterns of CNT@ZIF-8 and ZIF-8; (d) FTIR spectra of CNT@ZIF-8 and ZIF-8

    图  4  不同CNT@ZIF-8质量分数的CNT@ZIF/PLA纳纤膜的SEM图像:(a) 0wt%;(b) 8wt%;(c) 10wt%;(d) 12wt%

    Figure  4.  SEM images of CNT@ZIF/PLA nanofibrous membranes with different CNT@ZIF-8 mass fractions: (a) 0wt%; (b) 8wt%; (c) 10wt%; (d) 12wt%

    图  5  不同CNT@ZIF-8质量分数的CNT@ZIF/PLA纤维直径分布:(a) 0wt%;(b) 8wt%;(c) 10wt%;(d) 12wt%

    Figure  5.  CNT@ZIF/PLA fibrous diameter distribution with different CNT@ZIF-8 mass fractions: (a) 0wt%; (b) 8wt%; (c) 10wt%; (d) 12wt%

    $\overline D $—

    图  6  (a) CNT@ZIF/PLA纳纤膜的XRD图谱;(b) CNT@ZIF/PLA纳纤膜的FTIR图谱

    Figure  6.  (a) XRD patterns of CNT@ZIF/PLA nanofibrous membranes; (b) FTIR spectra of CNT@ZIF/PLA nanofibrous membranes

    图  7  CNT@ZIF/PLA纳纤膜的力学性能:(a) 应力-应变曲线;(b) 拉伸强度与断裂伸长率;(c) 杨氏模量与断裂韧性

    Figure  7.  Mechanical properties of CNT@ZIF/PLA nanofibrous membranes: (a) Stress-strain curves; (b) Tensile strength and elongation at break; (c) Young's modulus and fracture toughness

    图  8  CNT@ZIF/PLA纳纤膜的介电常数(a)与表面电势(b)

    Figure  8.  Dielectric constant (a) and surface potential (b) of CNT@ZIF/PLA nanofibrous membranes

    图  9  不同CNT@ZIF-8质量分数的CNT@ZIF/PLA纳纤膜的过滤性能随流速变化曲线:(a) PM0.3过滤效率;(b) PM2.5过滤效率;(c) 压降;(d) PM0.3品质因子;(e) 气溶胶发生器使用时间与PM2.5的过滤效率;(f) 长时间过滤PM0.3以及PM2.5的效率

    Figure  9.  Filtration performance in relation to flow rate of CNT@ZIF/PLA nanofibrous membranes with different CNT@ZIF-8 mass fractions: (a) PM0.3 filtration efficiency; (b) PM2.5 filtration efficiency; (c) Pressure drop; (d) PM0.3 quality factor; (e) Aerosol generator operating time and PM2.5 filtration efficiency; (f) Filtration efficiency of PM0.3 and PM2.5 in a long-service time

    图  10  CNT@ZIF/PLA纳纤膜的抗菌性能: (a) 纳纤膜抗菌实物图;(b) 1, 3-二苯基异苯并呋喃(DPBF)的紫外可见光谱

    Figure  10.  Antibacterial properties of CNT@ZIF/PLA nanofibrous membranes: (a) Antibacterial physical drawing of fibrous membrane; (b) UV-visible spectra of 1, 3-diphenylisobenzofuran (DPBF)

    图  11  纳纤膜长效抗菌性能评价:(a) CNT@ZIF/PLA纳纤膜抗菌性能循环测试;(b) 日光下CNT@ZIF/PLA纳纤膜抗菌性能测试;(c) CNT@ZIF/PLA纳纤膜抗菌性能与其他体系复合聚乳酸纳纤膜作比较(PLLA/地塞米松(Dex)/Ag[40]、PLLA/Ag-2MI[41]、PLA/ZnO-Ag[42]、Cur-ICG@ZIF-8/PLA[43])

    Figure  11.  Evaluation of the long-term antibacterial performance of nanofibrous membranes: (a) Cyclic testing of antimicrobial properties of CNT@ZIF/PLA nanofiber membranes; (b) Antibacterial performance test of CNT@ZIF/PLA nanofibrous membranes under sunlight; (c) Comparing the antibacterial performance of CNT@ZIF/PLA nanofibrous membranes with the other systems of PLA nanofibrous composite membranes (Poly(L-lactide) (PLLA)/dexamethasone (Dex)/Ag[40], PLLA/Ag-2MI[41], PLA/ZnO-Ag[42], Cur-ICG@ZIF-8/PLA[43])

  • [1] ZHANG M, LIU X, SUN X, et al. The influence of multiple environmental regulations on haze pollution: Evidence from China[J]. Atmospheric Pollution Research, 2020, 11(6): 170-179. doi: 10.1016/j.apr.2020.03.008
    [2] LI X C, ZHANG M R, JIANG Y F, et al. Air curtain dust-collecting technology: Investigation of factors affecting dust control performance of air curtains in the developed transshipment system for soybean clearance based on numerical simulation[J]. Powder Technology, 2022, 396: 59-67. doi: 10.1016/j.powtec.2021.10.018
    [3] PERRET J L, PLUSH B, LACHAPELLE P, et al. Coal mine dust lung disease in the modern era[J]. Respirology, 2017, 22(4): 662-670. doi: 10.1111/resp.13034
    [4] KWONG L H, WILSON R, KUMAR S, et al. Review of the breathability and filtration efficiency of common household materials for face masks[J]. ACS Nano, 2021, 15(4): 5904-5924. doi: 10.1021/acsnano.0c10146
    [5] MALLAKPOUR S, AZADI E, HUSSAIN C M. Fabrication of air filters with advanced filtration performance for removal of viral aerosols and control the spread of COVID-19[J]. Advances in Colloid and Interface Science, 2022, 303: 102653.
    [6] DENG Y, LU T, CUI J, et al. Bio-based electrospun nanofiber as building blocks for a novel eco-friendly air filtration membrane: A review[J]. Separation and Purification Technology, 2021, 277: 119623. doi: 10.1016/j.seppur.2021.119623
    [7] 周文, 俞建勇, 张世超, 等. 基于绿色溶剂的聚酰胺纳纤膜制备及其空气过滤性能[J]. 纺织学报, 2023, 44(1): 56-63. doi: 10.13475/j.fzxb.20220607808

    ZHOU Wen, YU Jianyong, ZHANG Shichao, et al. Preparation of green-solvent-based polyamide nanofiber membrane and its air filtration performance[J]. Journal of Textile Research, 2023, 44(1): 56-63(in Chinese). doi: 10.13475/j.fzxb.20220607808
    [8] 李俊, 伍文静, 孙金玺, 等. 电纺制备聚丙烯腈/聚偏氟乙烯复合纳纤膜及其空气过滤性能[J]. 复合材料学报, 2021, 38(3): 741-748. doi: 10.13801/j.cnki.fhclxb.20200814.001

    LI Jun, WU Wenjing, SUN Jinxi, et al. Preparation of polyacrylonitrile/polyvinylidene fluoride composite fiber membrane by electrospinning and its air filtration performance[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 741-748(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200814.001
    [9] TANG M, JIANG L, WANG C, et al. Bioelectrets in electrospun bimodal poly(lactic acid) fibers: Realization of multiple mechanisms for efficient and long-term filtration of fine PMs[J]. ACS Applied Materials & Interfaces, 2023, 15(21): 25919-25931.
    [10] 钱晓明, 魏楚, 钱幺, 等. 空气过滤用微纳米聚丙烯腈/皮芯型聚乙烯-聚丙烯双组分纤维多层复合材料的制备与性能[J]. 复合材料学报, 2020, 37(7): 1513-1521. doi: 10.13801/j.cnki.fhclxb.20191031.001

    QIAN Xiaoming, WEI Chu, QIAN Yao, et al. Preparation and properties of micro-nano polyacrylonitrile/sheath-core polyethylene polypropylene bicomponent fiber multilayer composite filtres[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1513-1521(in Chinese). doi: 10.13801/j.cnki.fhclxb.20191031.001
    [11] HAN W, RAO D, GAO H, et al. Green-solvent-processable biodegradable poly(lactic acid) nanofibrous membranes with bead-on-string structure for effective air filtration: "Kill two birds with one stone"[J]. Nano Energy, 2022, 97: 107237. doi: 10.1016/j.nanoen.2022.107237
    [12] WANG L, GAO Y, XIONG J, et al. Biodegradable and high-performance multiscale structured nanofiber membrane as mask filter media via poly(lactic acid) electrospinning[J]. Journal of Colloid and Interface Science, 2022, 606: 961-970. doi: 10.1016/j.jcis.2021.08.079
    [13] ZU K, QIN M, CUI S. Progress and potential of metal-organic frameworks (MOFs) as novel desiccants for built environment control: A review[J]. Renewable and Sustainable Energy Reviews, 2020, 133: 110246. doi: 10.1016/j.rser.2020.110246
    [14] BIAN Y, WANG R, WANG S, et al. Metal-organic framework-based nanofiber filters for effective indoor air quality control[J]. Journal of Materials Chemistry A, 2018, 6(32): 15807-15814. doi: 10.1039/C8TA04539A
    [15] ZHANG Y, YUAN S, FENG X, et al. Preparation of nanofibrous metal-organic framework filters for efficient air pollution control[J]. Journal of the American Chemical Society, 2016, 138(18): 5785-5788. doi: 10.1021/jacs.6b02553
    [16] BIAN Y, NIU Z, WANG S, et al. Removal of size-dependent submicron particles using metal-organic framework-based nanofiber air filters[J]. ACS Applied Materials & Interfaces, 2022, 14(20): 23570-23576.
    [17] LI X, ZHU G, TANG M, et al. Biodegradable MOFilters for effective air filtration and sterilization by coupling MOF functionalization and mechanical polarization of fibrous poly(lactic acid)[J]. ACS Applied Materials & Interfaces, 2023, 15(22): 26812-26823.
    [18] WU Y, ZHAO X, SHANG Y, et al. Application-driven carbon nanotube functional materials[J]. ACS Nano, 2021, 15(5): 7946-7974. doi: 10.1021/acsnano.0c10662
    [19] XIONG J, LI A, LIU Y, et al. Multi-scale nanoarchitectured fibrous networks for high-performance, sel-sterilization, and recyclable face masks[J]. Small, 2022, 18(2): 2105570. doi: 10.1002/smll.202105570
    [20] FENG S, LI X, ZHAO S, et al. Multifunctional metal organic framework and carbon nanotube-modified filter for combined ultrafine dust capture and SO2 dynamic adsorption[J]. Environmental Science: Nano, 2018, 5(12): 3023-3031. doi: 10.1039/C8EN01084F
    [21] LIM Q F, YAP R C C, TENG C P, et al. Electrospray-on-electrospun breathable, biodegradable, and robust nanofibrous membranes with photocatalytic bactericidal activity[J]. ACS Applied Nano Materials, 2023, 6(3): 1828-1838. doi: 10.1021/acsanm.2c04776
    [22] 中华人民共和国卫生部. 塑料 塑料表面抗菌性能实验方法: GB/T 31402—2015[S]. 北京: 中国标准出版社, 2015.

    Ministry of Health of the People's Republic of China. Plastics—Measurement of antibacterial activity on plastics surfaces: GB/T 31402—2015[S]. Beijing: China Standards Press, 2015(in Chinese).
    [23] KIM J, YOUNG C, LEE J, et al. CNT grown on nanoporous carbon from zeolitic imidazolate frameworks for supercapacitors[J]. Chemical Communications, 2016, 52(88): 13016-13019. doi: 10.1039/C6CC07705F
    [24] NI R, XU H, MA J, et al. Zeolite imidazole framework-8 (ZIF-8) decorated keratin-based air filters with formaldehyde removal and photocatalytic disinfection performance[J]. Materials Today Chemistry, 2022, 23: 100689. doi: 10.1016/j.mtchem.2021.100689
    [25] LYU L, HAN X, MU M, et al. Templating metal-organic framework into fibrous nanohybrids for large-capacity and high-flux filtration interception[J]. Journal of Membrane Science, 2021, 622: 119049. doi: 10.1016/j.memsci.2021.119049
    [26] DENG Y, LU T, ZHANG X, et al. Multi-hierarchical nanofiber membrane with typical curved-ribbon structure fabricated by green electrospinning for efficient, breathable and sustainable air filtration[J]. Journal of Membrane Science, 2022, 660: 120857. doi: 10.1016/j.memsci.2022.120857
    [27] DAI X, LI X, WANG X. Morphology controlled porous poly(lactic acid)/zeolitic imidazolate framework-8 fibrous membranes with superior PM2.5 capture capacity[J]. Chemical Engineering Journal, 2018, 338: 82-91. doi: 10.1016/j.cej.2018.01.025
    [28] KIM B, JANG Y, KIM J, et al. High-performance electrospun particulate matter (PM) filters embedded with self-polarizable tetragonal BaTiO3 nanoparticles[J]. Chemical Engineering Journal, 2022, 450: 138340. doi: 10.1016/j.cej.2022.138340
    [29] KE L, YANG T, LIANG C, et al. Electroactive, antibacterial, and biodegradable poly(lactic acid) nanofibrous air filters for healthcare[J]. ACS Applied Materials & Interfaces, 2023, 15(27): 32463-32474.
    [30] SU Z, ZHANG M, LU Z, et al. Functionalization of cellulose fiber by in situ growth of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals for preparing a cellulose-based air filter with gas adsorption ability[J]. Cellulose, 2018, 25(3): 1997-2008. doi: 10.1007/s10570-018-1696-4
    [31] MOHAMMED Y A Y A, ABDEL-MOHSEN A M, ZHANG Q, et al. Facile synthesis of ZIF-8 incorporated electrospun PAN/PEI nanofibrous composite membrane for efficient Cr(VI) adsorption from water[J]. Chemical Engineering Journal, 2023, 461: 141972. doi: 10.1016/j.cej.2023.141972
    [32] MODI A, JIANG Z, KASHER R. Hydrostable ZIF-8 layer on polyacrylonitrile membrane for efficient treatment of oilfield produced water[J]. Chemical Engineering Journal, 2022, 434: 133513. doi: 10.1016/j.cej.2021.133513
    [33] CHENG L, YAN P, YANG X, et al. High conductivity, percolation behavior and dielectric relaxation of hybrid ZIF-8/CNT composites[J]. Journal of Alloys and Compounds, 2020, 825: 154132. doi: 10.1016/j.jallcom.2020.154132
    [34] 刘延波, 赵新宇, 刘健, 等. 驻极体电纺膜的荷电特性及其空气过滤性能[J]. 天津工业大学学报, 2018, 37(5): 1-7. doi: 10.3969/j.issn.1671-024x.2018.05.001

    LIU Yanbo, ZHAO Xinyu, LIU Jian, et al. Charging behavior and air filtration performance of electrospun electret membranes[J]. Journal of Tianjin Polytechnic University, 2018, 37(5): 1-7(in Chinese). doi: 10.3969/j.issn.1671-024x.2018.05.001
    [35] BUI T T, SHIN M K, JEE S Y, et al. Ferroelectric PVDF nanofiber membrane for high-efficiency PM0.3 air filtration with low air flow resistance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 640: 128418. doi: 10.1016/j.colsurfa.2022.128418
    [36] LI T, ZHANG H, GAO B, et al. Daylight-driven rechargeable, antibacterial, filtrating micro/nanofibrous composite membranes with bead-on-string structure for medical protection[J]. Chemical Engineering Journal, 2021, 422: 130007. doi: 10.1016/j.cej.2021.130007
    [37] ZAMOJC K, ZDROWOWICZ M, RUDNICKI-VELASQUEZ P B, et al. The development of 1, 3-diphenylisobenzofuran as a highly selective probe for the detection and quantitative determination of hydrogen peroxide[J]. Free Radical Research, 2017, 51(1): 38-46. doi: 10.1080/10715762.2016.1262541
    [38] LIU B, YANG Y, WU H, et al. Zeolitic imidazolate framework-8 triggers the inhibition of arginine biosynthesis to combat methicillin-resistant staphylococcus aureus[J]. Small, 2023, 19(14): 2205682. doi: 10.1002/smll.202205682
    [39] WANG T, WANG Y, SUN M, et al. Thermally treated zeolitic imidazolate framework-8 (ZIF-8) for visible light photocatalytic degradation of gaseous formaldehyde[J]. Chemical Science, 2020, 11(26): 6670-6681. doi: 10.1039/D0SC01397H
    [40] LIU Y, LIU F, QIU Y, et al. Potent antibacterial fibers with the functional "triad" of photothermal, silver, and Dex for bone infections[J]. Materials & Design, 2022, 223: 111153.
    [41] YANG D, ZHU Y, LI J, et al. Degradable, antibacterial and ultrathin filtrating electrospinning membranes of Ag-MOFs/poly(l-lactide) for air pollution control and medical protection[J]. International Journal of Biological Macromolecules, 2022, 212: 182-192. doi: 10.1016/j.ijbiomac.2022.05.112
    [42] SU X, ZHAI Y, JIA C, et al. Improved antibacterial properties of polylactic acid-based nanofibers loaded with ZnO-Ag nanoparticles through pore engineering[J]. ACS Applied Materials & Interfaces, 2023, 15(36): 42920-42929.
    [43] ZHANG S, YE J, LIU X, et al. Dual stimuli-responsive smart fibrous membranes for efficient photothermal/photodynamic/chemo-therapy of drug-resistant bacterial infection[J]. Chemical Engineering Journal, 2022, 432: 134351.
  • 加载中
图(11)
计量
  • 文章访问数:  199
  • HTML全文浏览量:  118
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-24
  • 修回日期:  2023-09-30
  • 录用日期:  2023-10-12
  • 网络出版日期:  2023-11-01
  • 刊出日期:  2024-06-15

目录

    /

    返回文章
    返回