留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原位聚合法制备纳米核-壳型PS-CHO@RGO复合微球及其催化活化过硫酸氢钾降解亚甲基蓝

倪镜博 刘如一 张明 严长浩

倪镜博, 刘如一, 张明, 等. 原位聚合法制备纳米核-壳型PS-CHO@RGO复合微球及其催化活化过硫酸氢钾降解亚甲基蓝[J]. 复合材料学报, 2021, 38(7): 2132-2139. doi: 10.13801/j.cnki.fhclxb.20200928.003
引用本文: 倪镜博, 刘如一, 张明, 等. 原位聚合法制备纳米核-壳型PS-CHO@RGO复合微球及其催化活化过硫酸氢钾降解亚甲基蓝[J]. 复合材料学报, 2021, 38(7): 2132-2139. doi: 10.13801/j.cnki.fhclxb.20200928.003
NI Jingbo, LIU Ruyi, ZHANG Ming, et al. Preparation of nano core-shell PS-CHO@RGO composite microspheres by in-situ polymerization as a potassium hydrogen persulfate catalytic activator for methylene blue degradation[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2132-2139. doi: 10.13801/j.cnki.fhclxb.20200928.003
Citation: NI Jingbo, LIU Ruyi, ZHANG Ming, et al. Preparation of nano core-shell PS-CHO@RGO composite microspheres by in-situ polymerization as a potassium hydrogen persulfate catalytic activator for methylene blue degradation[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2132-2139. doi: 10.13801/j.cnki.fhclxb.20200928.003

原位聚合法制备纳米核-壳型PS-CHO@RGO复合微球及其催化活化过硫酸氢钾降解亚甲基蓝

doi: 10.13801/j.cnki.fhclxb.20200928.003
基金项目: 国家自然科学基金(51273172);江苏省研究生创新计划(SJCX19_0886)
详细信息
    通讯作者:

    严长浩,博士,副教授,硕士生导师,研究方向为聚合物基功能复合材料 E-mail:yzuyanch@126.com

  • 中图分类号: TB332

Preparation of nano core-shell PS-CHO@RGO composite microspheres by in-situ polymerization as a potassium hydrogen persulfate catalytic activator for methylene blue degradation

  • 摘要: 还原氧化石墨烯(RGO)具有比表面积大、电子传输效率高、吸附速率快等优点,在处理油污、重金属离子、有机染料等领域均有应用,但由于自团聚而造成的分散性差等问题限制了其进一步应用。采用原位聚合法制备纳米核-壳型聚苯乙烯醛基微球(PS-CHO)@RGO复合微球。利用TEM、Raman、XRD、XPS及绝缘电阻测试仪对PS-CHO@RGO复合微球的形貌及理化性能进行表征。以亚甲基蓝(MB)为目标污染物,探究了PS-CHO@RGO复合微球在少量过硫酸氢钾(PMPS)存在下的氧化活性,并提出了降解机制。结果表明,RGO片层均匀包覆于PS-CHO微球表面,有效改善了分散性。制备所得PS-CHO@RGO复合微球的渗透阈值低,导电网络完善。降解实验中,PS-CHO@RGO复合微球可以激发PMPS生成硫酸根自由基(SO4•),MB的氧化降解率显著提高,60 min内可达98%以上。PS-CHO@RGO复合微球同时表现出良好的稳定性,通过高速离心的方式实现循环利用。

     

  • 图  1  聚苯乙烯醛基微球@还原氧化石墨烯(PS-CHO@RGO)复合微球合成示意图及样品照片

    Figure  1.  Preparation schematic diagram of polystyrene aldehyde microspheres@reduced graphene oxide (PS-CHO@RGO) composite microspheres and photograph of preparated samples

    PVP—Polyvinylpyrrolidone

    图  2  PS-CHO微球(a)、氧化石墨烯(GO) (b)和PS-CHO@RGO复合微球(c)的TEM图像

    Figure  2.  TEM images of PS-CHO microspheres (a), graphene oxide (GO) (b) and PS-CHO@RGO composite microspheres (c)

    图  3  PS-CHO微球、GO和PS-CHO@RGO复合微球的拉曼图谱

    Figure  3.  Raman spectra of PS-CHO microspheres, GO and PS-CHO@RGO composite microspheres

    图  4  PS-CHO微球、石墨粉(GP)、GO和PS-CHO@RGO复合微球的XRD图谱

    Figure  4.  XRD patterns of PS-CHO microspheres, graphite powder (GP), GO and PS-CHO@RGO composite microspheres

    图  5  GP、GO和PS-CHO@RGO复合微球的C1s XPS图谱

    Figure  5.  C1s XPS spectra of GP, GO and PS-CHO@RGO composite microspheres

    图  6  不同RGO体积分数的PS-CHO@RGO复合微球的电导率

    Figure  6.  Conductivity of PS-CHO@RGO composite microspheres with different volume fraction of RGO

    图  7  PS-CHO@RGO复合微球的催化活性: (a)不同浓度亚甲基蓝(MB)的吸光度; (b)吸光度与浓度线性方程;(c)不同反应条件下MB浓度的变化曲线; (d)循环催化曲线

    Figure  7.  Catalytic activities of PS-CHO@RGO composite microspheres: (a) Absorbance of different concentrations of methylene blue (MB); (b) Linear equation of absorbance and concentration of MB; (c) Concentration rate curves of MB under different reaction conditions; (d) Cyclic catalysis plots

    PMPS—Potassium hydrogen persulfate

    图  8  PS-CHO@RGO复合微球催化降解MB的机制

    Figure  8.  Catalytic degradation mechanism of MB by PS-CHO@RGO composite microspheres

    表  1  GP、GO和PS-CHO@RGO复合微球的化学元素含量

    Table  1.   Chemical element contents of GP, GO and PS-CHO@RGO composite microspheres

    SampleC/at%O/at%C/O ratio
    GP 98.05 1.03 93.38
    GO 60.23 39.67 1.51
    PS-CHO@RGO 90.34 9.66 9.35
    下载: 导出CSV
  • [1] WU J M, JING G J, LU X L, et al. The effect of sulfonated graphene on the rheological properties of cement paste[J]. Journal of Nanoscience and Nanotechnology,2020,20(12):7495-7505. doi: 10.1166/jnn.2020.18871
    [2] LI D, KANER R B. Graphene-based materials[J]. Nature Nanotechnology,2008,3:101-105. doi: 10.1038/nnano.2007.451
    [3] WEI X, MENG Z, RUIZ L, et al. Recoverable slippage mechanism in multilayer graphene leads to repeatable energy dissipation[J]. ACS Nano,2016,10(2):1820-1828. doi: 10.1021/acsnano.5b04939
    [4] LI C, XUE Z, QIN J, et al. Synthesis of nickel hydroxide/delaminated-Ti3C2 MXene nanosheets as promising anode material for high performance lithium ion battery[J]. Journal of Alloys and Compounds,2020,842:155812.
    [5] ANSARI N, PAYAMI Z. Synthesis of magnetic graphene-Fe3O4 nanocomposites by electrochemical exfoliation method[J]. Journal of Nanostructures,2020,10(1):39-43.
    [6] CHI F, CHEN P, MAO C. Highly efficient photocatalytic disinfection of Escherichia coli by rose bengal-functionalized graphene oxide nanosheets[J]. Journal of Nanoscience and Nanotechnology,2020,20(12):7558-7568. doi: 10.1166/jnn.2020.18615
    [7] RAMANATHAN T, ABDALA A A, STANKOVICH S, et al. Functionalized graphene sheets for polymer nanocomposites[J]. Nature Nanotechnology,2008,3:327-331. doi: 10.1038/nnano.2008.96
    [8] SUN H, LIU S, ZHOU G, et al. Reduced graphene-oxide for catalytic oxidation of aqueous organic pollutants[J]. ACS Applied Materials & Interfaces,2012,4(10):5466-5471.
    [9] SHUKLA P, SUN H, WANG S, et al. Co-SBA-15 for heterogeneous oxidation of phenol with sulfate radical for wastewater treatment[J]. Catalysis Today,2011,175(1):380-385. doi: 10.1016/j.cattod.2011.03.005
    [10] JAYANTHI S, LAVANYA T, DUTTA M, et al. Fabrication and characterization of graphene nanofibers by electrospinning technique and its electrochemical properties[J]. Journal of Nanoscience and Nanotechnology,2020,20(12):7659-7664. doi: 10.1166/jnn.2020.18625
    [11] ANIPSITAKIS G P, STATHATOS E, DIONYSIOU D D. Heterogeneous activation of oxone using Co3O4[J]. The Journal of Physical Chemistry B,2005,109(27):13052-13055. doi: 10.1021/jp052166y
    [12] LING S K, WANG S, PENG Y. Oxidative degradation of dyes in water using Co2+/H2O2 and Co2+/peroxymonosulfate[J]. Journal of Hazardous Materials,2010,178(1-3):385-389. doi: 10.1016/j.jhazmat.2010.01.091
    [13] BAI F, YANG X L, ZHAO Y Z, et al. Synthesis of core-shell microspheres with active hydroxyl groups by two-stage precipitation polymerization[J]. Polymer International, 2005, 54(1): 1 68-174.
    [14] OMI S, SAITO M, HASHIMOTO T, et al. Preparation of monodisperse polystyrene spheres incorporating polyimide prepolymer by dispersion polymerization in the presence of L-ascorbic acid[J]. Journal of Applied Polymer Science,1998,68(6):897-907. doi: 10.1002/(SICI)1097-4628(19980509)68:6<897::AID-APP4>3.0.CO;2-C
    [15] RIAHI K Z, SDIRI N, ENNIGROU D J, et al. Investigations on electrical conductivity and dielectric properties of graphene oxide nanosheets synthetized from modified Hummer’s method[J]. Journal of Molecular Structure,2020,1216:128304.
    [16] HOUAS A, LACHHEB H, KSIBI M, et al. Photocatalytic degradation pathway of methylene blue in water[J]. Applied Catalysis B: Environmental,2001,31(2):145-157. doi: 10.1016/S0926-3373(00)00276-9
    [17] UMEBAYASHI T, YAMAKI T, TANAKA S, et al. Visible light-induced degradation of methylene blue on S-doped TiO2[J]. Chemistry Letters,2003,32(4):330-331. doi: 10.1246/cl.2003.330
    [18] WU H, ZHAO W, HU H, et al. One-step in situ ball milling synthesis of polymer-functionalized graphene nanocomposites[J]. Journal of Materials Chemistry,2011,21(24):8626-8632. doi: 10.1039/c1jm10819k
    [19] LIU Y T, YANG J M, XIE X M, et al. Polystyrene-grafted graphene with improved solubility in organic solvents and its compatibility with polymers[J]. Materials Chemistry and Physics,2011,130(1-2):794-799. doi: 10.1016/j.matchemphys.2011.07.067
    [20] FAN Z, WANG K, WEI T, et al. An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder[J]. Carbon,2010,48(5):1686-1689. doi: 10.1016/j.carbon.2009.12.063
    [21] ZHANG H, LIU S. Electrochemical biosensors based on nitrogen-doped reduced graphene oxide for the simultaneous detection of ascorbic acid, dopamine and uric acid[J]. Journal of Alloys and Compounds,2020,842:155873.
    [22] KWON O S, PARK S J, HONG J Y, et al. Flexible FET-type VEGF aptasensor based on nitrogen-doped graphene converted from conducting polymer[J]. ACS Nano,2012,6(2):1486-1493. doi: 10.1021/nn204395n
    [23] QI X Y, YAN D, JIANG Z G, et al. Enhanced electrical conductivity in polystyrene nanocomposites at ultra-low graphene content[J]. ACS Applied Materials & Interfaces,2011,8(3):3130-3133.
    [24] LUO Y, ZHAO P, YANG Q, et al. Fabrication of conductive elastic nanocomposites via framing intact interconnected graphene networks[J]. Composites Science and Technology,2014,100:143-151. doi: 10.1016/j.compscitech.2014.05.037
    [25] JU S A, KIM K, KIM J H, et al. Graphene-wrapped hybrid spheres of electrical conductivity[J]. ACS Applied Materials & Interfaces,2011,3(8):2904-2911.
    [26] KAVITHA K, URADE A R, KAUR G, et al. Low-temperature chemical vapor deposition growth of graphene layers on copper substrate using camphor precursor[J]. Journal of Nanoscience and Nanotechnology,2020,20(12):7698-7704. doi: 10.1166/jnn.2020.18862
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1631
  • HTML全文浏览量:  534
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-13
  • 录用日期:  2020-09-24
  • 网络出版日期:  2020-09-28
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回