留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水泥基结构电池:机制、影响因素及应用

谢文剑 高皖扬 胡南滔

谢文剑, 高皖扬, 胡南滔. 水泥基结构电池:机制、影响因素及应用[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 谢文剑, 高皖扬, 胡南滔. 水泥基结构电池:机制、影响因素及应用[J]. 复合材料学报, 2024, 42(0): 1-11.
XIE Wenjian, GAO Wanyang, HU Nantao. Cement-based structural batteries: mechanism, influencing factors, and application[J]. Acta Materiae Compositae Sinica.
Citation: XIE Wenjian, GAO Wanyang, HU Nantao. Cement-based structural batteries: mechanism, influencing factors, and application[J]. Acta Materiae Compositae Sinica.

水泥基结构电池:机制、影响因素及应用

基金项目: 上海市自然科学基金 (23ZR1429200)
详细信息
    通讯作者:

    高皖扬,博士,副教授,博士生导师,研究方向为高性能结构材料及组合结构 E-mail: wanyanggao@sjtu.edu.cn

  • 中图分类号: TU528;TB333

Cement-based structural batteries: mechanism, influencing factors, and application

Funds: Natural Science Foundation of Shanghai in China (No. 23ZR1429200)
  • 摘要: 结构储能一体化复合材料为结构与储能的融合发展提供了创新途径。将水泥基材料用作结构电解质,并与电极材料相结合,即可得到水泥基结构电池。本文系统总结了水泥基结构电池的研究进展,阐明了其导电机制和放电机制,并从电极和电解质两个主要方面厘清了影响其电化学性能的关键因素。研究表明,该电池的电压可达1.5 V以上,体积比容量可达8.45×105 mA·h·m−3,并具备充放电的能力。凭借其结构储能一体化特性,水泥基结构电池在绿色储能建筑、智能化混凝土和能量收集混凝土等领域具有应用潜力。最后,指出了目前存在的问题及未来的研究方向。

     

  • 图  1  两种结构形式的水泥基电池

    Figure  1.  Two structural types of cement-based batteries

    图  2  水泥基材料的导电路径[14]

    Figure  2.  Conductivity path in cement-based materials[14]

    CP—continuous points, DP—discontinuous points, CCP—continuous conductive paths, CDP—capacitance due to DP, RDP—resistance due to DP, RCCP—resistance due to CCP.

    图  3  水泥基材料的Nyquist图

    Figure  3.  Nyquist plot of cement-based materials

    图  4  水泥基二次电池的电压和电流曲线[10]

    Figure  4.  Voltage and current profiles during charge and discharge cycles of rechargeable cement-based battery[10]

    图  5  水灰比对电池的影响[30]

    Figure  5.  Effect of water-to-cement ratio on battery[30]

    图  6  电流大小对恒流放电曲线[41]

    Figure  6.  Effect of current on galvanostatic discharge profile[41]

    图  7  水泥基结构电池的应用前景

    Figure  7.  Future application of cement-based battery

    表  1  水泥基结构电池现有研究进展

    Table  1.   A collected database of current research on cement-based concrete batteries

    Ref. Typea Main additive Age/d Dimension/mm Performanced
    Anode Cathodeb Conductive fillerc $ \rho $/(Ω·cm) $ J $/(μA·cm−2) $ Q $/(mA·h·m−3)
    [47] P Al (Fe) 28 0.75 L 0.25 NA
    [41] L Zn MnO2 CB 28 80×40×14 1931 1.88 62.7
    [48] L Zn MnO2 AC 7 70×20×18
    [11] L Zn MnO2 CF+CNT+CB 3 φ30×70 0.53/0.81 e
    [9] P Al (Cu) NA NA φ66×100
    P Al (Cu) AlS NA 100×100×30
    [49] P Al (Cu) CB+AlS+EpS 1 70×70×40
    [50] P Al (Cu) CB 21 100×100×30
    [30] P Al (Cu) 28 70×70×30 891 70 >952
    [10] L Fe Ni(OH)2 CF 7 90×90×8.75 221
    Notes:
    a L—layered style, P—probe style.
    b The material in brackets is the electrode serving as the electrocatalyst.
    c CB—carbon black, AC—activated charcoal, CF—carbon fiber, CNT—carbon nanotube, AlS—Alum salt; EpS—Epsom salts.
    d $ \rho $—resistivity, $ J $—current density, $ Q $—capacity density.
    e 0.53 and 0.81 represent for the resistivity of cement-based anode and cathode, respectively.
    下载: 导出CSV
  • [1] 新浪财经. 2022中国建筑能耗与碳排放研究报告 [EB/OL], (2023-03-13) [2023-10-15]. https://finance.sina.com.cn/esg/2023-03-13/doc-imyksqvf8798450.shtml.

    Sina Finance. 2022 Research report of China building energy consumption and carbon emissions [EB/OL], (2023-03-13) [2023-10-15]. https://finance.sina.com.cn/esg/2023-03-13/doc-imyksqvf8798450.shtml(in Chinese).
    [2] 修晓青, 李相俊, 王佳蕊, 等. 基于等效能折算的储能电站广义成本研究[J]. 中国电力, 2022, 55(4): 192-202.

    XIU Xiaoqing, LI Xiangjun, WANG Jiarui, et al. Generalized cost study of energy storage power station based on equivalent efficiency conversion[J]. Electric Power, 2022, 55(4): 192-202(in Chinese).
    [3] 程鑫, 龚贤夫, 周姝灿, 等. 缓解网络阻塞的储能规划综合评价[J]. 高电压技术, 2021, 47(7): 2624-2635.

    CHENG Xin, GONG Xianfu, ZHOU Shucan, et al. Comprehensive evaluation for energy storage planning to relieve network congestion[J]. High Voltage Engineering, 2021, 47(7): 2624-2635(in Chinese).
    [4] CHUNG D D L, WANG S. Carbon fiber polymer-matrix structural composite as a semiconductor and concept of optoelectronic and electronic devices made from it[J]. Smart Materials and Structures, 1999, 8: 161-166. doi: 10.1088/0964-1726/8/1/018
    [5] GALOS J, PATTARAKUNNAN K, BEST A S, et al. Energy storage structural composites with integratedl lithium-ion batteries: A review[J]. Advanced Materials Technologies, 2021, 6(8): 2001059. doi: 10.1002/admt.202001059
    [6] ASP L E, GREENHALGH E S. Structural power composites[J]. Composites Science and Technology, 2014, 101: 41-61. doi: 10.1016/j.compscitech.2014.06.020
    [7] 高永晟, 陈光海, 王欣然, 等. 钠离子电池电解质安全性: 改善策略与研究进展[J]. 储能科学与技术, 2020, 9(5): 1309-1317.

    GAO Yongsheng, CHEN Guanghai, WANG Xinran, et al. Safety of electrolytes for sodium-ion batteries: Strategies and progress[J]. Energy Storage Science and Technology, 2020, 9(5): 1309-1317(in Chinese).
    [8] ZHANG J, XU J, ZHANG D. A structural supercapacitor based on graphene and hardened cement paste[J]. Journal of The Electrochemical Society, 2016, 163(3): E83-E87. doi: 10.1149/2.0801603jes
    [9] HOLMES N, BYRNE A, NORTON B. First steps in developing cement-based batteries to power cathodic protection of embedded steel in concrete[J]. Sustainable Design and Research, 2015, 3(1): 25-32.
    [10] ZHANG E Q, TANG L. Rechargeable concrete battery[J]. Buildings, 2021, 11(3): 103. doi: 10.3390/buildings11030103
    [11] QIAO G, SUN G, LI H, et al. Heterogeneous tiny energy: An appealing opportunity to power wireless sensor motes in a corrosive environment[J]. Applied Energy, 2014, 131: 87-96. doi: 10.1016/j.apenergy.2014.06.018
    [12] WHITING B D A, NAGI M A, Electrical resistivity of concrete—a literature review: R&D Serial No. 2457 [R]. Skokie, Illinois, USA: Portland Cement Association, 2003.
    [13] 唐祖全, 钱觉时, 杨再富. 导电混凝土研究进展[J]. 重庆建筑大学学报, 2006, 28(6): 135-139.

    TANG Zuquan, QIAN Jueshi, YANG Zaifu. Researdch progress of eelctrically conductive concrete[J]. Journal of Chongqing Jianzhu University, 2006, 28(6): 135-139(in Chinese).
    [14] SONG G. Equivalent circuit model for AC electrochemical impedance spectroscopy of concrete[J]. Cement and Concrete Research, 2000, 30(11): 1723-1730. doi: 10.1016/S0008-8846(00)00400-2
    [15] CHRISTENSEN B J, COVERDALE T, OLSON R A, et al. Impedance spectroscopy of hydrating cement-based materials: Measurement, interpretation, and application[J]. Journal of the American Ceramic Society, 1994, 77(11): 2789-2804. doi: 10.1111/j.1151-2916.1994.tb04507.x
    [16] BEDIWY A, BASSUONI M T. Resistivity, penetrability and porosity of concrete: a tripartite relationship[J]. Journal of Testing and Evaluation, 2018, 46(2): 549-563. doi: 10.1520/JTE20160374
    [17] LIU Z, ZHANG Y, JIANG Q. Continuous tracking of the relationship between resistivity and pore structure of cement pastes[J]. Construction and Building Materials, 2014, 53: 26-31. doi: 10.1016/j.conbuildmat.2013.11.067
    [18] HU X, SHI C, LIU X, et al. Studying the effect of alkali dosage on microstructure development of alkali-activated slag pastes by electrical impedance spectroscopy (EIS)[J]. Construction and Building Materials, 2020, 261: 119982. doi: 10.1016/j.conbuildmat.2020.119982
    [19] DONG B, QIU Q, GU Z, et al. Characterization of carbonation behavior of fly ash blended cement materials by the electrochemical impedance spectroscopy method[J]. Cement and Concrete Composites, 2016, 65: 118-127. doi: 10.1016/j.cemconcomp.2015.10.006
    [20] MCCARTER W J, TAHA H M, SURYANTO B, et al. Two-point concrete resistivity measurements: interfacial phenomena at the electrode–concrete contact zone[J]. Measurement Science and Technology, 2015, 26(8): 085007. doi: 10.1088/0957-0233/26/8/085007
    [21] 谭伟, 李洪玲, 洪成林, 等. 电解质对离子导电混凝土电阻率的影响[J]. 石河子大学学报(自然科学版), 2014, 32(4): 496-499.

    TAN Wei, Li Hongling, HONG Chenglin. The effect of electrolytes on electrical resistivity of the ion conductive concrete[J]. Journal of Shihezi University (Natural Science), 2014, 32(4): 496-499 (in Chinese).
    [22] 王瑞攀, 何富强, 戴李宗. 水泥基材料抗压强度与交流阻抗参数的关系研究[J]. 硅酸盐通报, 2019, 38(5): 1362-1368.

    WANG Ruipan, HE Fuqiang, DAI Lizong. Study on the relationship between compressive strength and ac impedance parameters of cement-based materials[J]. Bulletin of The Chinese Ceramic Society, 2019, 38(5): 1362-1368 (in Chinese).
    [23] SU J K, YANG C C, WU W B, et al. Effect of moisture content on concrete resistivity measurement[J]. Journal of the Chinese Institute of Engineers, 2002, 25(1): 117-122. doi: 10.1080/02533839.2002.9670686
    [24] 翁余斌, 赵若红, 徐安, 等. 不同引气剂对离子导电砂浆孔隙率及导电性能的影响研究[J]. 混凝土, 2019, (4): 91-96. doi: 10.3969/j.issn.1002-3550.2019.04.021

    WENG Yubin, ZHAO Ruohong, XU An, et al. Influence of different air entraining agent on the porosity and conductivity of ionically conductive mortar[J]. Concrete, 2019, (4): 91-96 (in Chinese). doi: 10.3969/j.issn.1002-3550.2019.04.021
    [25] ZHAO R, WENG Y, TUAN C, et al. The influence of water/cement ratio and air entrainment on the electric resistivity of ionically conductive mortar[J]. Materials, 2019, 12: 1125. doi: 10.3390/ma12071125
    [26] HUNKELER F. The resistivity of pore water solution—a decisive parameter of rebar corrosion and repair methods[J]. Construction and Building Materials, 1996, 10(5): 381-389. doi: 10.1016/0950-0618(95)00029-1
    [27] RAJABIPOUR F, WEISS J. Electrical conductivity of drying cement paste[J]. Materials and Structures, 2007, 40(10): 1143-1160. doi: 10.1617/s11527-006-9211-z
    [28] SALEEM M, SHAMEEM M, HUSSAIN S E, et al. Effect of moisture, chloride and sulphate contamination on the electrical resistivity of Portland cement concrete[J]. Construction and Building Materials, 1996, 10(3): 209-214. doi: 10.1016/0950-0618(95)00078-X
    [29] GJøRV O E, VENNESLAND Ø E, EL-BUSAIDY A H S. Electrical resistivity of concrete in the oceans; Offshore Technology Conference [C
    [30] CHEN Y, LIN S, WANG J, et al. Preparation and characterization of geopolymer-based batteries with electrochemical impedance spectroscopy (EIS) and discharge performance[J]. Journal of The Electrochemical Society, 2018, 165(13): A3029. doi: 10.1149/2.0371813jes
    [31] ZHAO R H, TUAN C Y, XU A, et al. Conductivity of ionically-conductive mortar under repetitive electrical heating[J]. Construction and Building Materials, 2018, 173: 730-739. doi: 10.1016/j.conbuildmat.2018.04.074
    [32] ZHAO R, TUAN C, FAN D, et al. Ionically conductive mortar for electrical heating[J]. ACI Materials Journal, 2017, 114(6): 923-933.
    [33] VOLLPRACHT A, LOTHENBACH B, SNELLINGS R, et al. The pore solution of blended cements: a review[J]. Materials and Structures, 2016, 49(8): 3341-3367. doi: 10.1617/s11527-015-0724-1
    [34] XIAO L, LI Z. Early-age hydration of fresh concrete monitored by non-contact electrical resistivity measurement[J]. Cement and Concrete Research, 2008, 38(3): 312-319. doi: 10.1016/j.cemconres.2007.09.027
    [35] BUENFELD N R, NEWMAN J B. Examination of three methods for studying ion diffusion in cement pastes, mortars and concrete[J]. Materials and Structures, 1987, 20(1): 3-10. doi: 10.1007/BF02472720
    [36] MONTANARI L, SURANENI P, TSUI-CHANG M, et al. Hydration, pore solution, and porosity of cementitious pastes made with seawater[J]. Journal of Materials in Civil Engineering, 2019, 31(8): 04019154. doi: 10.1061/(ASCE)MT.1943-5533.0002818
    [37] SNYDER K A, FENG X, KEEN B D, et al. Estimating the electrical conductivity of cement paste pore solutions from OH−, K+ and Na+ concentrations[J]. Cement and Concrete Research, 2003, 33(6): 793-798. doi: 10.1016/S0008-8846(02)01068-2
    [38] NAGAO M, KOBAYASHI K, JIN Y, et al. Ionic conductive and photocatalytic properties of cementitious materials: calcium silicate hydrate and calcium aluminoferrite[J]. Journal of Materials Chemistry A, 2020, 8(30): 15157-15166. doi: 10.1039/D0TA04866F
    [39] VILLAGRáN ZACCARDI Y A, FULLEA GARCíA J, HUéLAMO P, et al. Influence of temperature and humidity on Portland cement mortar resistivity monitored with inner sensors[J]. Materials and Corrosion, 2009, 60(4): 294-299. doi: 10.1002/maco.200805075
    [40] 范道波, 赵若红, 徐安, 等. 离子导电砂浆导电性能研究[J]. 混凝土, 2016, (5): 117-121. doi: 10.3969/j.issn.1002-3550.2016.05.031

    FAN Daobo, ZHAO Ruohong, XU An, et al. A research on electrical characteristics of ion conductive mortar[J]. Concrete, 2016, (5): 117-121 (in Chinese). doi: 10.3969/j.issn.1002-3550.2016.05.031
    [41] MENG Q, CHUNG D D L. Battery in the form of a cement-matrix composite[J]. Cement and Concrete Composites, 2010, 32(10): 829-839. doi: 10.1016/j.cemconcomp.2010.08.009
    [42] MCCARTER W J, GARVIN S, BOUZID N. Impedance measurements on cement paste[J]. Journal of Materials Science Letters, 1988, 7(10): 1056-1057. doi: 10.1007/BF00720825
    [43] CHI L, WANG Z, LU S, et al. Development of mathematical models for predicting the compressive strength and hydration process using the EIS impedance of cementitious materials[J]. Construction and Building Materials, 2019, 208: 659-668. doi: 10.1016/j.conbuildmat.2019.03.056
    [44] ZHONG S, SHI M, CHEN Z. The AC response of polymer-coated mortar specimens[J]. Cement and Concrete Research, 2002, 32(6): 983-987. doi: 10.1016/S0008-8846(02)00741-X
    [45] 安晓鹏, 史才军, 何富强, 等. 三组分胶凝材料体系的交流阻抗特性[J]. 硅酸盐学报, 2012, 40(7): 1059-1066.

    AN Xiaopeng, SHI Caijun, HE Fuqiang, et al. AC impedance characteristics of ternary cementitious materials[J]. Journal of The Chinese Ceramic Society, 2012, 40(7): 1059-1066 (in Chinese).
    [46] NEWLANDS M D, JONES M R, KANDASAMI S, et al. Sensitivity of electrode contact solutions and contact pressure in assessing electrical resistivity of concrete[J]. Materials and Structures, 2008, 41(4): 621-632. doi: 10.1617/s11527-007-9257-6
    [47] BURSTEIN G T, SPECKERT E I. Developing a Battery using Concrete as an Electrolyte[J]. ECS Transactions, 2008, 3(42): 13-20. doi: 10.1149/1.2838188
    [48] RAMPRADHEEP G S, SIVARAJA M, NIVEDHA K. Electricity generation from cement matrix incorporated with self-curing agent; IEEE-International Conference On Advances In Engineering, Science And Management (ICAESM -2012) [C]. Nagapattinam, India: IEEE, 2012.
    [49] BYRNE A, HOLMES N, NORTON B. Cement based batteries and their potential for use in low power operations[J]. IOP Conference Series:Materials Science and Engineering, 2015, 96: 012073. doi: 10.1088/1757-899X/96/1/012073
    [50] BYRNE A, BARRY S, HOLMES N, et al. Optimising the performance of cement-based batteries[J]. Advances in Materials Science and Engineering, 2017, 2017: 4724302.
    [51] OUELLETTE S A, TODD M D. Cement seawater battery energy harvester for marine infrastructure monitoring[J]. IEEE Sensors Journal, 2014, 14(3): 865-872. doi: 10.1109/JSEN.2013.2290492
    [52] CHAN W W J, WU C M L. Durability of concrete with high cement replacement[J]. Cement and Concrete Research, 2000, 30(6): 865-879. doi: 10.1016/S0008-8846(00)00253-2
    [53] ZHANG Q, LUAN C, YU C, et al. Mechanisms of carbon black in multifunctional cement matrix: Hydration and microstructure perspectives[J]. Construction and Building Materials, 2022, 346: 128455. doi: 10.1016/j.conbuildmat.2022.128455
    [54] 北方网. 比尔·盖茨豪宅探秘 高科技设备不凡 [EB/OL], (2009-12-02) [2023-06-01]. http://house.enorth.com.cn/system/2009/12/02/004300832.shtml.

    Tianjin ENORTH. Bill Gates mansion exploration: High-tech equipment is extraordinary [EB/OL], (2009-12-02) [2023-06-01]. http://house.enorth.com.cn/system/2009/12/02/004300832.shtml (in Chinese).
    [55] 北方网. 国际住宅智能化的演变 [EB/OL], (2002-01-26) [2023-06-01]. http://house.enorth.com.cn/system/2002/01/26/000254505.shtml.

    Tianjin ENORTH. Evolution of international housing intelligence [EB/OL], (2002-01-26) [2023-06-01]. http://house.enorth.com.cn/system/2002/01/26/000254505.shtml(in Chinese).
    [56] SOFI A, JANE REGITA J, RANE B, et al. Structural health monitoring using wireless smart sensor network – An overview[J]. Mechanical Systems and Signal Processing, 2022, 163: 108113. doi: 10.1016/j.ymssp.2021.108113
    [57] 崔一纬, 魏亚. 水泥基复合材料热电效应综述: 机制、材料、影响因素及应用[J]. 复合材料学报, 2020, 37(9): 2077-2093.

    CUI Yiwei, WEI Ya. A review of thermoelectric effect of cement-based composites: Mechanism, material, factor and application[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2077-2093 (in Chinese).
    [58] JI T, ZHANG X, ZHANG X, et al. Effect of manganese dioxide nanorods on the thermoelectric properties of cement composites[J]. Journal of Materials in Civil Engineering, 2018, 30(9): 04018224. doi: 10.1061/(ASCE)MT.1943-5533.0002401
  • 加载中
计量
  • 文章访问数:  104
  • HTML全文浏览量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-28
  • 修回日期:  2024-01-14
  • 录用日期:  2024-01-24
  • 网络出版日期:  2024-03-02

目录

    /

    返回文章
    返回