留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光诱导石墨烯的制备、改性与应用

张子阳 李钊

张子阳, 李钊. 激光诱导石墨烯的制备、改性与应用[J]. 复合材料学报, 2024, 41(6): 2867-2880. doi: 10.13801/j.cnki.fhclxb.20230912.002
引用本文: 张子阳, 李钊. 激光诱导石墨烯的制备、改性与应用[J]. 复合材料学报, 2024, 41(6): 2867-2880. doi: 10.13801/j.cnki.fhclxb.20230912.002
ZHANG Ziyang, LI Zhao. Preparation, modification and application of laser-induced graphene[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 2867-2880. doi: 10.13801/j.cnki.fhclxb.20230912.002
Citation: ZHANG Ziyang, LI Zhao. Preparation, modification and application of laser-induced graphene[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 2867-2880. doi: 10.13801/j.cnki.fhclxb.20230912.002

激光诱导石墨烯的制备、改性与应用

doi: 10.13801/j.cnki.fhclxb.20230912.002
基金项目: 国家重点研发计划(2020YFA0210703)
详细信息
    通讯作者:

    李钊,博士,研究方向为纳米多孔材料 E-mail: lizhao9554@mail.ustc.edu.cn

  • 中图分类号: TB333

Preparation, modification and application of laser-induced graphene

Funds: National Key Research and Development Program of China (2020YFA0210703)
  • 摘要: 激光诱导是一种新型的石墨烯制备技术(Laser induced graphene,LIG),该工艺是通过高能束辐照含碳基底实现三维网络结构石墨烯的快速生成。与传统的石墨烯制备工艺相比,LIG制备技术具有快速制备、可图案化、环境友好、微观形貌可控和成分可控等特点,因此受到了广泛的关注。本文总结了LIG近年的研究进展,包括前驱体的成分调控、光源的选择和LIG的微结构控制。同时也探究了近年来LIG的原位和非原位的修饰改性方法,阐述了LIG在柔性储能电极和传感器领域的应用,并对LIG在集能源、传感和检测一体化设备方向的发展进行展望。

     

  • 图  1  (a) 激光诱导聚酰亚胺(PI)生成激光诱导石墨烯(LIG);(b) LIG薄膜的SEM图像(插图为相应的高倍SEM图像);(c) PI薄膜和 LIG粉末的XRD图谱;(d) PI薄膜和LIG的拉曼光谱;(e) LIG的HRTEM图像;(f) LIG薄片边缘扫描透射显微镜(STEM)图像[31]

    Figure  1.  (a) Laser induced graphene (LIG) formation on polyimide (PI) by laser-induced; (b) SEM image of LIG thin films (Inset is the corresponding higher magnification SEM image); (c) XRD patterns of PI film and LIG powder; (d) Raman spectra of PI film and LIG; (e) HRTEM image of LIG; (f) Scanning transmission microscope (STEM) images of the edge of LIG sheet[31]

    图  2  (a) 激光诱导聚砜(PSU)类聚合物转变成LIG的原理图[34];(b) 椰子和面包表面转换为字母“R”形状的LIG[37];(c) 聚苯并噁嗪基LIG的制备示意图[38]

    Figure  2.  (a) Schematic of PSU class polymers LIG via laser induction[34]; (b) LIG conversion of coconut and bread surfaces into letter "R" shape[37]; (c) Schematic illustration for the preparation of poly(Ph-ddm)-based LIG[38]

    DDM—4, 4-diaminodiphenyl methane

    图  3  (a) 森林状石墨烯薄膜的结构及其宽带光吸收和高光热转换的理论机制[52];(b) LIG泡沫的制造和加工[53];(c) 3D “R”形状的LIG泡沫[53];(d) 光纤激光加工示意图[53];(e) 叠层制造和光纤雕刻结合打印的3D LIG泡沫[53];(f) 基于LIG的增材制造技术的示意图[54];(g) 打印整个石墨烯涡轮机的分布流程[54];(h) 全石墨烯宏观结构(AGM)的激光辅助生长示意图[55];(i) 含20层LIG泡沫的AGM立方体(插图是AGM立方体的放大截面SEM图像)[55]

    Figure  3.  (a) Structure of forest-like graphene film and the theoretical mechanism of broadband light absorption and high photothermal conversion[52]; (b) Manufacturing and processing of LIG foam[53]; (c) 3D "R" shape of the milled LIG foam[53]; (d) Schematic of fiber laser milling process[53]; (e) 3D LIG foam printed by the combination of laminated object manufacturing and fiber laser milling[53]; (f) Schematic diagram of additive manufacturing technology based on LIG[54]; (g) Step-by-step process for printing a whole graphene turbine[54]; (h) Schematic illustration of laser-assisted growth of all-graphene macrostructures (AGM) [55]; (i) Cube of AGM with 20-layer LIG foam (The inset is the enlarged cross-sectional SEM image of the AGM cube)[55]

    EG—Ethylene glycol

    图  4  (a) 激光诱导PI生成LIG纤维(LIGF)的示意图[56];(b) “R”形图案的LIGF[56];(c) LIGF的SEM图像(插图为TEM图像)[56];(d) PI生产激光诱导石墨烯电子器件的路线图[60];(e) LIGF电子器件(LIGFE)的光学图像[60];(f) 柔性LIGFE照片[60]

    Figure  4.  (a) Schematic diagram of laser induced PI generation of LIG fibers (LIGF)[56]; (b) "R" shape patterned LIGF[56]; (c) SEM image of LIGF (Inset is the TEM image) [56]; (d) Roadmap of producing laser-induced graphene fiber electronics (LIGFE) from PI[60]; (e) Optical photo of LIGFE[60]; (f) Digital photographs of flexible LIGFE[60]

    图  5  (a) 从单层LIG (s-LIG)到致密LIG (d-LIG)的制备过程示意图[64];(b) s-LIG 和d-LIG-2.4的XPS图谱[64];(c) d-LIG-2.4中氮气峰的解卷积[64];(d) 通过激光诱导在PI/聚磷酸铵(APP)薄膜上制造的掺磷石墨烯(LIPG)[68];(e) 在可控气室中制造LIG[69];((f), (g)) 在不同气体环境下制备的LIG样品的XPS图谱[69];((h)~(k)) 在不同气体环境下制备的LIG样品的俯视图扫描电镜图像[69]

    Figure  5.  (a) Diagram of the preparation process for the transition from single LIG (s-LIG) to dense LIG (d-LIG) [64]; (b) XPS spectra of s-LIG and d-LIG-2.4[64]; (c) Deconvolution of nitrogen peak for d-LIG-2.4[64]; (d) Phosphorus-doped graphene (LIPG) fabricated on PI/ammonium polyphosphate (APP) film by laser induction[68]; (e) Abrication of LIG in a controlled gas chamber[69]; ((f), (g)) XPS spectra of LIG samples made under different gas atmospheres[69]; ((h)~(k)) Top view SEM images of LIG samples prepared under different gas atmospheres [69]

    图  6  (a) 激光诱导含金属配合物的聚酰亚胺(MC-PI)薄膜形成金属氧化物(MO)-LIG[93];((b)~(d)) MO-LIG的SEM图像[93];((e)~(j)) LIG中的结晶金属氧化物的高分辨TEM图像[93];(k) LIG/Cu的合成方法[94];((i), (m)) LIG/Cu的TEM图像和高分辨TEM图像[94]

    Figure  6.  (a) Formation of metal oxide (MO)-LIG by laser induction on metal-complex-containing polyimide (MC-PI) film[93]; ((b)-(d)) SEM images of MO-LIG [93]; ((e)-(j)) High-resolution TEM images showing crystalline metal oxide in LIG[93]; (k) Synthetic scheme of the preparation of LIG/Cu[94]; ((i), (m)) TEM image and high-resolution TEM image of LIG/Cu[94]

    PAA—Poly(amic acid); NPs—Nanoparticle; d—Lattice fringe spacing

    图  7  (a) LIG-MnO2、LIG-FeOOH、LIG-聚苯胺(PANI)超级电容器(SC)的结构示意图[100];(b) 微型超级电容器(MSC)器件的数码图像[100];(c) LIG-MnO2的横断面扫描电镜图像[100];(d) LIG-MnO2-2.5 h、LIG-PANI-15和LIG-FeOOH//LIG-MnO2的Ragone图[100];(e) LIG-SC和堆叠的LIG-SC的制造示意图[102];(f) LIG-SC柔性测试图[102];(g) 激光诱导PI两侧形成石墨烯的横截面SEM图像[102];(h) LIG的SEM图像[102];(i) LIG的TEM图像(插图为高分辨TEM图像)[102];(j) LIG-SC和LIG-MSC的Ragone图谱[102]

    Figure  7.  (a) Schematic structure of LIG-MnO2, LIG-FeOOH, LIG-polyaniline (PANI) supercapacitors (SC)[100]; (b) Digital photograph of one microsupercapacitor (MSC) device[100]; (c) Cross-sectional SEM image of LIG-MnO2[100]; (d) Ragone plots of LIG-MnO2-2.5 h, LIG-PANI-15, and LIG-FeOOH//LIG-MnO2; (e) Manufacturing schematic diagram of LIG-SC and stacked LIG-SC[100]; (f) LIG-SC flexible testing diagram[102]; (g) Cross sectional SEM image of a PI substrate with both sides laser induced to form graphene[102]; (h) SEM image of the LIG film[102]s; (i) TEM image of a LIG thin film (Inset is HRTEM image of LIG)[102]; (j) Ragone plots of single LIG-SC and LIG-MSC[102]

    PVA—Poly(vinyl alcohol)

    图  8  (a) Kevlar纤维向LIG转变的示意图;(b) LIG-Kevlar气体传感器对不同NO2浓度的响应曲线;(c) LIG-Kevlar气体传感器在100 ppm NO2浓度下的3次循环响应曲线;(d) 用于心电图(ECG)测量的LIG-Kevlar电极的示意图;(e) 用LIG-Kevlar电极测量手臂的心电图信号;(f) 放大后心电信号[109]

    Figure  8.  (a) Schematic illustration showing the transformation of Kevlar to LIG; (b) Response curves of the LIG-Kevlar textile gas sensor to different NO2 concentrations; (c) Three-cycle response curves of the LIG-Kevlar gas sensor upon exposure to 100 ppm of NO2; (d) Schematic illustration showing the LIG-Kevlar textile electrode for electrocardiogram (ECG) measurement; (e) ECG signals from the arms measured by LIG-Kevlar textile electrodes; (f) Magnified ECG signal[109]

    图  9  (a) LIG具有发射和检测声音的能力;(b) 在10 kHz和20 kHz时,声压与输入功率的关系图(方块是实验结果,直线是理论结果);(c) 不同功率激光器产生的 LIG 输出声压级(SPL)与频率的关系(4条曲线均以1 W的输入功率进行归一化处理);(d) 测试人员佩戴了LIG人工喉;(e) LIG的阻值随测试者喉咙振动而变化[114]

    Figure  9.  (a) LIG has the ability of emitting and detecting sound; (b) Plot of the sound pressure versus the input power at 10 kHz and 20 kHz (The square is the experimental result and the line is the theoretical result); (c) Output sound pressure level (SPL) versus the frequency of LIG generated by the laser with different power (The four curves are normalized with the input power of 1 W); (d) Tester wearing the LIG artificial throat; (e) LIG's resistance changes towards the throat vibrations of the tester[114]

  • [1] WANG M H, HUANG M, LUO D, et al. Single-crystal, large-area, fold-free monolayer graphene[J]. Nature, 2021, 596(7873): 519-524. doi: 10.1038/s41586-021-03753-3
    [2] JI J H, KWAK H M, YU J, et al. Understanding the 2D-material and substrate interaction during epitaxial growth towards successful remote epitaxy: A review[J]. Nano Convergence, 2023, 10: 19. doi: 10.1186/s40580-023-00368-4
    [3] NAG A, MITRA A, MUKHOPADHYAY S C. Graphene and its sensor-based applications: A review[J]. Sensors and Actuators A: Physical, 2018, 270(1): 177-194.
    [4] CHANG T H, TIAN Y, LI C S, et al. Stretchable graphene pressure sensors with Shar-Pei-like hierarchical wrinkles for collision-aware surgical robotics[J]. ACS Applied Materials & Interfaces, 2019, 11(10): 10226-10236.
    [5] FERRARI A C, MEYER J C, SCARDACI V, et al. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters, 2006, 97(18): 187401.
    [6] XIONG Z X, MARCONNET A, RUAN X L. Unconventional and dynamically anisotropic thermal conductivity in compressed flexible graphene foams[J]. ACS Applied Materials & Interfaces, 2022, 14(43): 48960-48966.
    [7] LUO W W, KUZMENKO A B, QI J L, et al. Nanoinfrared characterization of bilayer graphene conductivity under dual-gate tuning[J]. Nano Letters, 2021, 21(12): 5151-5157. doi: 10.1021/acs.nanolett.1c01167
    [8] BOLOTIN K I, GHAHARI F, SHULMAN M D, et al. Observation of the fractional quantum Hall effect in graphene[J]. Nature, 2009, 462(7270): 196-199. doi: 10.1038/nature08582
    [9] TONG Z, PECCHIA A, YAM C Y, et al. Ultrahigh electron thermal conductivity in T-graphene, biphenylene, and net-graphene[J]. Advanced Energy Materials, 2022, 12(28): 2200657.
    [10] KHAN T, ALI M A, IRFAN M S, et al. Resin infusion process monitoring using graphene coated glass fabric sensors and infusible thermoplastic and thermoset matrices[J]. Polymer Composites, 2022, 43(5): 2924-2940. doi: 10.1002/pc.26587
    [11] SUN Y Q, WU Q, SHI G Q. Graphene based new energy materials[J]. Energy & Environmental Science, 2011, 4(4): 1113-1132.
    [12] GIRIT C O, MEYER J C, ERNI R, et al. Graphene at the edge: Stability and dynamics[J]. Science, 2009, 323(5922): 1705-1708. doi: 10.1126/science.1166999
    [13] JEON I, PARK G H, WANG P, et al. Dynamic fluid-like graphene with ultralow frictional molecular bearing[J]. Advanced Materials, 2019, 31(43): 1903195.
    [14] CHOI B G, YANG M H, HONG W H, et al. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities[J]. ACS Nano, 2012, 6(5): 4020-4028. doi: 10.1021/nn3003345
    [15] CHEN S N, LIU X S, LUO R H, et al. Tuning the thermal transport of hexagonal boron nitride/reduced graphene oxide heterostructures[J]. ACS Applied Materials & Interfaces, 2022, 14(19): 22626-22633. doi: 10.1021/acsami.2c04253
    [16] WANG Y, LI Y M, TANG L H, et al. Application of graphene-modified electrode for selective detection of dopamine[J]. Electrochemistry Communications, 2009, 11(4): 889-892. doi: 10.1016/j.elecom.2009.02.013
    [17] KIM Y H, NGUYEN H Q, PARK B J, et al. Characteristics of a multiple-layered graphene oxide memory thin film transistor with gold nanoparticle embedded as charging elements[J]. Journal of Nanomaterials, 2021, 2021: 6689861. doi: 10.1155/2021/6689861
    [18] LIN S S, HABIB M A, BURSE S, et al. Hybrid UV photodetector design incorporating AuPt alloy hybrid nanoparticles, ZnO quantum dots, and graphene quantum dots[J]. ACS Applied Materials & Interfaces, 2023, 15(1): 2204-2215.
    [19] KOSMALA T, BABY A, LUNARDON M, et al. Operando visualization of the hydrogen evolution reaction with atomic-scale precision at different metal-graphene interfaces[J]. Nature Catalysis, 2021, 4: 850-859.
    [20] QU L T, LIU Y, BAEK J B, et al. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells[J]. ACS Nano, 2010, 4(3): 1321-1326. doi: 10.1021/nn901850u
    [21] LIU Y X, DONG X C, CHEN P. Biological and chemical sensors based on graphene materials[J]. Chemical Society Reviews, 2012, 41(6): 2283-2307. doi: 10.1039/C1CS15270J
    [22] REN W C, GAO L B, MA L P, et al. Preparation of graphene by chemical vapor deposition[J]. New Carbon Materials, 2011, 49(8): 2878-2881.
    [23] FAN X B, PENG W C, LI Y, et al. Deoxygenation of exfoliated graphite oxide under alkaline conditions: A green route to graphene preparation[J]. Advanced Materials, 2008, 20(23): 4490-4493. doi: 10.1002/adma.200801306
    [24] INAGAKI M, KIM Y A, ENDO M. Graphene: Preparation and structural perfection[J]. Journal of Materials Chemistry, 2011, 21(10): 3280-3294. doi: 10.1039/C0JM02991B
    [25] LIN Z, WALLER G, LIU Y, et al. Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction[J]. Advanced Energy Materials, 2012, 2(7): 884-888. doi: 10.1002/aenm.201200038
    [26] LIU J Y, CHANG H Y, TRUONG Q D, et al. Synthesis of nitrogen-doped graphene by pyrolysis of ionic-liquid-functionalized graphene[J]. Journal of Materials Chemistry C, 2013, 1(9): 1713-1716. doi: 10.1039/c3tc00191a
    [27] ZHI L J, MÜLLEN K. A bottom-up approach from molecular nanographenes to unconventional carbon materials[J]. Journal of Materials Chemistry, 2008, 18(13): 1472-1484. doi: 10.1039/b717585j
    [28] SINGH V, JOUNG D, ZHAI L, et al. Graphene based materials: Past, present and future[J]. Progress in Materials Science, 2011, 56(8): 1178-1271. doi: 10.1016/j.pmatsci.2011.03.003
    [29] CHOUBAK S, LEVESQUE P L, GAUFRES E, et al. Graphene CVD: Interplay between growth and etching on morphology and stacking by hydrogen and oxidizing impurities[J]. Journal of Physical Chemistry C, 2014, 118(37): 21532-21540. doi: 10.1021/jp5070215
    [30] LIN Z, WALLER G, LIU Y, et al. Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction[J]. Advanced Energy Materials, 2012, 2(7): 884-888. doi: 10.1002/aenm.201200038
    [31] LIN J, PENG Z W, LIU Y Y, et al. Laser-induced porous graphene films from commercial polymers[J]. Nature Communications, 2014, 5: 5714. doi: 10.1038/ncomms6714
    [32] DONG Y, RISMILLER S C, LIN J. Molecular dynamic simulation of layered graphene clusters formation from polyimides under extreme conditions[J]. Carbon, 2016, 104: 47-55.
    [33] WANG J G, MA F C, SUN M T. Graphene, hexagonal boron nitride, and their heterostructures: Properties and applications[J]. Royal Society of Chemistry, 2017, 7(27): 16801-16822.
    [34] SINGH S P, LI Y L, ZHANG J B, et al. Sulfur-doped laser-induced porous graphene derived from polysulfone-class polymers and membranes[J]. ACS Nano, 2018, 12(1): 289-297. doi: 10.1021/acsnano.7b06263
    [35] YE R Q, CHYAN Y, ZHANG J B, et al. Laser-induced graphene formation on wood[J]. Advanced Materials, 2017, 29(37): 1702211.
    [36] ZHANG Z C, SONG M M, HAO J X, et al. Visible light laser-induced graphene from phenolic resin: A new approach for directly writing graphene-based electrochemical devices on various substrates[J]. Carbon, 2018, 127: 287-296. doi: 10.1016/j.carbon.2017.11.014
    [37] CHYAN Y, YE R, LI Y, et al. Laser-induced graphene by multiple lasing: Toward electronics on cloth, paper, and food[J]. ACS Nano, 2018, 12(3): 2176-2183. doi: 10.1021/acsnano.7b08539
    [38] CAO L J, ZHU S R, PAN B H, et al. Stable and durable laser-induced graphene patterns embedded in polymer substrates[J]. Carbon, 2020, 163: 85-94. doi: 10.1016/j.carbon.2020.03.015
    [39] YE R Q, JAMES D K, TOUR J M. Laser-induced graphene: From discovery to translation[J]. Advanced Materials, 2019, 31(1): 1803621.
    [40] VASHISTH A, KOWALIK M, GERRINGER J C, et al. ReaxFF simulations of laser-induced graphene (LIG) formation for multifunctional polymer nanocomposites[J]. ACS Applied Nano Materials, 2020, 3(2): 1881-1890. doi: 10.1021/acsanm.9b02524
    [41] KAIDAROVA A, KOSEL J. Physical sensors based on laser-induced graphene: A review [J]. IEEE Sensors Journal, 2021, 21(11): 12426-12443.
    [42] WANG Y, ZHAO Y, LI X, et al. Laser-based growth and treatment of graphene for advanced photo- and electro-related device applications[J]. Advanced Functional Materials, 2022, 32(42): 2203164.
    [43] WEN L, ZHOU T, ZHANG J H, et al. Local controllable laser patterning of polymers induced by graphene material[J]. ACS Applied Materials & Interfaces, 2016, 8(41): 28077-28085.
    [44] CARVALHO A F, FERNANDES A J S, LEITÃO C, et al. Laser-induced graphene strain sensors produced by ultraviolet irradiation of polyimide[J]. Advanced Functional Materials, 2018, 28(52): 1805271.
    [45] YOSHIMITSU Z, NAKAJIMA A, WATANABE T, et al. Effects of surface structure on the hydrophobicity and sliding behavior of water droplets[J]. Langmuir, 2002, 18(15): 5818-5822. doi: 10.1021/la020088p
    [46] ZHANG Q W, ZHANG F Y, LIU X, et al. Doping of laser-induced graphene and its applications[J]. Advanced Materials Technologies, 2023, 8(16): 2300244.
    [47] KHANDELWAL M, NGUYEN A P, VAN TRAN C, et al. Simple fabrication of Co3O4 nanoparticles on N-doped laser-induced graphene for high-performance supercapacitors[J]. RSC Advances, 2021, 11(61): 38547-38554. doi: 10.1039/D1RA08048B
    [48] MENDOZA M E, FERREIRA E H M, KUZNETSOV A, et al. Revealing lattice disorder, oxygen incorporation and pore formation in laser induced two-photon oxidized graphene[J]. Carbon, 2019, 143: 720-727. doi: 10.1016/j.carbon.2018.11.070
    [49] HYEONG S K, PARK M, KIM S I, et al. Compacted laser-induced graphene with bamboo-like carbon nanotubes for transformable capacitive energy storage electrodes[J]. Advanced Materials Technologies, 2022, 7(7): 2101105.
    [50] YIN J, ZHANG J X, ZHANG S D, et al. Flexible 3D porous graphene film decorated with nickel nanoparticles for absorption-dominated electromagnetic interference shielding[J]. Chemical Engineering Journal, 2021, 421: 129763.
    [51] HAN X, YE R Q, CHYAN Y, et al. Laser-induced graphene from wood impregnated with metal salts and use in electrocatalysis[J]. ACS Applied Nano Materials, 2018, 1(9): 5053-5061. doi: 10.1021/acsanm.8b01163
    [52] PENG Y Y, ZHAO W W, NI F, et al. Forest-like laser-induced graphene film with ultrahigh solar energy utilization efficiency[J]. ACS Nano, 2021, 15(12): 19490-19502. doi: 10.1021/acsnano.1c06277
    [53] LUONG D X, SUBRAMANIAN A K, SILVA G A L, et al. Laminated object manufacturing of 3D-printed laser-induced graphene foams[J]. Advanced Materials, 2018, 30(28): e1707416.
    [54] LIU F, GAO Y, WANG G T, et al. Laser-induced graphene enabled additive manufacturing of multifunctional 3D architectures with freeform structures[J]. Advanced Science, 2023, 10(4): e2204990.
    [55] SONG Y P, LI N, HAN S, et al. Macro-sized all-graphene 3D structures via layer-by-layer covalent growth for micro-to-macro inheritable electrical performances[J]. Advanced Functional Materials, 2023, 33(43): 2305191.
    [56] DUY L X, PENG Z W, LI Y L, et al. Laser-induced graphene fibers[J]. Carbon, 2017, 126: 472-479.
    [57] LUONG D X, YANG K C, YOON J, et al. Laser-induced graphene composites as multifunctional surfaces[J]. ACS Nano, 2019, 13(2): 2579-2586.
    [58] NASSER J, ZHANG L S, SODANO H. Laser induced graphene interlaminar reinforcement for tough carbon fiber/epoxy composites[J]. Composites Science and Technology, 2021, 201: 108493.
    [59] NASSER J, GROO L, ZHANG L S, et al. Laser induced graphene fibers for multifunctional aramid fiber reinforced composite[J]. Carbon, 2020, 158: 146-156. doi: 10.1016/j.carbon.2019.11.078
    [60] HE M H, WANG Y N, WANG S R, et al. Laser-induced graphene enabled 1D fiber electronics[J]. Carbon, 2020, 168: 308-318. doi: 10.1016/j.carbon.2020.06.084
    [61] LEE H, PAENG K, KIM I S. A review of doping modulation in graphene[J]. Synthetic Metals, 2018, 244: 36-47. doi: 10.1016/j.synthmet.2018.07.001
    [62] KONG X K, CHEN C L, CHEN Q W. Doped graphene for metal-free catalysis[J]. Chemical Society Reviews, 2014, 43(8): 2841-2857. doi: 10.1039/C3CS60401B
    [63] FAN Z J, ZHAO Q K, LI T Y, et al. Easy synthesis of porous graphene nanosheets and their use in supercapacitors[J]. Carbon, 2012, 50(4): 1699-1703. doi: 10.1016/j.carbon.2011.12.016
    [64] KIM K Y, CHOI H, VAN TRAN C, et al. Simultaneous densification and nitrogen doping of laser-induced graphene by duplicated pyrolysis for supercapacitor applications[J]. Journal of Power Sources, 2019, 441: 227199.
    [65] LI Q, MAHMOOD N, ZHU J H, et al. Graphene and its composites with nanoparticles for electrochemical energy applications[J]. Nano Today, 2014, 9(5): 668-683. doi: 10.1016/j.nantod.2014.09.002
    [66] XU G Y, DING B, PAN J, et al. Porous nitrogen and phosphorus Co-doped carbon nanofiber networks for high performance electrical double layer capacitors[J]. Journal of Materials Chemistry A, 2015, 3(46): 23268-23273. doi: 10.1039/C5TA06113J
    [67] YANG N, ZHENG X Q, LI L, et al. Influence of phosphorus configuration on electronic structure and oxygen reduction reactions of phosphorus-doped graphene[J]. Journal of Physical Chemistry C, 2017, 121(35): 19321-19328. doi: 10.1021/acs.jpcc.7b06748
    [68] YANG W W, LIU Y, LI Q S, et al. In situ formation of phosphorus-doped porous graphene via laser induction[J]. RSC Advances, 2020, 10(40): 23953-23958. doi: 10.1039/D0RA03363D
    [69] LI Y L, LUONG D X, ZHANG J B, et al. Laser-induced graphene in controlled atmospheres: From superhydrophilic to superhydrophobic surfaces[J]. Advanced Materials, 2017, 29(27): 1700496.
    [70] BROWNSON D A C, BANKS C E. Graphene electrochemistry: Surfactants inherent to graphene inhibit metal analysis[J]. Electrochemistry Communications, 2011, 13(2): 111-113. doi: 10.1016/j.elecom.2010.11.024
    [71] BROWNSON D A C, KAMPOURIS D K, BANKS C E. An overview of graphene in energy production and storage applications[J]. Journal of Power Sources, 2011, 196(11): 4873-4885. doi: 10.1016/j.jpowsour.2011.02.022
    [72] DONG L F, GARI R R S, LI Z, et al. Graphene-supported platinum and platinum-ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation[J]. Carbon, 2010, 48(3): 781-787. doi: 10.1016/j.carbon.2009.10.027
    [73] TAN S F, REIDY K, LEE S, et al. Multilayer graphene—A promising electrode material in liquid cell electrochemistry[J]. Advanced Functional Materials, 2021, 31(46): 2104628.
    [74] WANG D H, KOU R, CHOI D, et al. Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage[J]. ACS Nano, 2010, 4(3): 1587-1595. doi: 10.1021/nn901819n
    [75] WU Z S, ZHOU G M, YIN L C, et al. Graphene/metal oxide composite electrode materials for energy storage[J]. Nano Energy, 2012, 1(1): 107-131. doi: 10.1016/j.nanoen.2011.11.001
    [76] ZHANG J T, XIONG Z G, ZHAO X S. Graphene-metal-oxide composites for the degradation of dyes under visible light irradiation[J]. Journal of Materials Chemistry, 2011, 21(11): 3634-3640. doi: 10.1039/c0jm03827j
    [77] WANG S Y, JIANG S P, WANG X. Microwave-assisted one-pot synthesis of metal/metal oxide nanoparticles on graphene and their electrochemical applications[J]. Electrochimica Acta, 2011, 56(9): 3338-3344. doi: 10.1016/j.electacta.2011.01.016
    [78] ZENG C, WANG M, ZHOU Y, et al. Tunneling spectroscopy of metal-oxide-graphene structure[J]. Applied Physics Letters, 2010, 97(3): 032104.
    [79] CHENG X B, PENG H J, HUANG J Q, et al. Dual-phase lithium metal anode containing a polysulfide-induced solid electrolyte interphase and nanostructured graphene framework for lithium-sulfur batteries[J]. ACS Nano, 2015, 9(6): 6373-6382. doi: 10.1021/acsnano.5b01990
    [80] MA L B, SHEN X P, JI Z Y, et al. Carbon coated nickel sulfide/reduced graphene oxide nanocomposites: Facile synthesis and excellent supercapacitor performance[J]. Electrochimica Acta, 2014, 146: 525-532. doi: 10.1016/j.electacta.2014.09.087
    [81] MUKKABLA R, DEEPA M, SRIVASTAVA A K. Enhanced lithium-ion storage capability of a bismuth sulfide/graphene oxide/poly(3, 4-ethylenedioxythiophene) composite[J]. ChemPhysChem, 2015, 16(15): 3242-3253. doi: 10.1002/cphc.201500515
    [82] LEE B J, JUNG S M, KWON J, et al. Harvesting low-grade waste heat to electrical power using a thermoelectrochemical cell based on a titanium carbide electrode[J]. ACS Applied Energy Materials, 2022, 5(2): 2130-2137. doi: 10.1021/acsaem.1c03683
    [83] AHN S, HAN T H, MALESKI K, et al. A 2D titanium carbide MXene flexible electrode for high-efficiency light-emitting diodes[J]. Advanced Materials, 2020, 32(23): 2000919.
    [84] WILDE H E. Potentiometric determination of boron in aluminum oxide-boron carbide using an ion specific electrode[J]. Analytical Chemistry, 1973, 45(8): 1526-1528. doi: 10.1021/ac60330a043
    [85] SALIMI A, MOHAMADI L, HALLAJ R, et al. Electrooxidation of insulin at silicon carbide nanoparticles modified glassy carbon electrode[J]. Electrochemistry Communications, 2009, 11(6): 1116-1119. doi: 10.1016/j.elecom.2009.03.024
    [86] WU M X, LIN X, HAGFELDT A, et al. Low-cost molybdenum carbide and tungsten carbide counter electrodes for dye-sensitized solar cells[J]. Angewandte Chemie International Edition, 2011, 50(15): 3520-3524. doi: 10.1002/anie.201006635
    [87] IKEDA T, BOERO M, HUANG S F, et al. Carbon alloy catalysts: Active sites for oxygen reduction reaction[J]. Journal of Physical Chemistry C, 2008, 112(38): 14706-14709.
    [88] PRESSER V, HEON M, GOGOTSI Y. Carbide-derived carbons-from porous networks to nanotubes and graphene[J]. Advanced Functional Materials, 2011, 21(5): 810-833.
    [89] LEE J T, KIM H, OSCHATZ M, et al. Micro- and mesoporous carbide-derived carbon-selenium cathodes for high-performance lithium selenium batteries[J]. Advanced Energy Materials, 2015, 5(1): 1400981.
    [90] CHANG C G, YANG J C, ZHANG G, et al. Fabrication of segregated poly (arylene sulfide sulfone)/graphene nanoplate composites reinforced by polymer fibers for electromagnetic interference shielding[J]. Nano Materials Science, 2022, 4(3): 285-293. doi: 10.1016/j.nanoms.2021.11.001
    [91] HE X, FENG L, SONG H J, et al. Vertically aligned carbon nanotube@graphene paper/polydimethylsilane composites for electromagnetic interference shielding and flexible joule heating[J]. ACS Applied Nano Materials, 2022, 5(5): 6365-6375. doi: 10.1021/acsanm.2c00476
    [92] FAN H, TAN Z W, LIU H Y, et al. Enhanced ferroelectric and piezoelectric properties in graphene-electroded Pb(Zr, Ti)O3 thin films[J]. ACS Applied Materials & Interfaces, 2022, 14(15): 17987-17994.
    [93] YE R Q, PENG Z W, WANG T, et al. In situ formation of metal oxide nanocrystals embedded in laser-induced graphene[J]. ACS Nano, 2015, 9(9): 9244-9251. doi: 10.1021/acsnano.5b04138
    [94] CHEN L Q, LI N, YU X L, et al. A general way to manipulate electrical conductivity of graphene[J]. Chemical Engineering Journal, 2023, 462: 142139.
    [95] CLERICI F, FONTANA M, BIANCO S, et al. In situ MoS2 decoration of laser-induced graphene as flexible supercapacitor electrodes[J]. ACS Applied Materials & Interfaces, 2016, 8(16): 10459-10465.
    [96] LEI L Q, CAO Z Q, LI J L, et al. Multiplying energy storage capacity: In situ polypyrrole electrodeposition for laser-induced graphene electrodes[J]. ACS Applied Energy Materials, 2022, 5(10): 12790-12797. doi: 10.1021/acsaem.2c02393
    [97] CAO R Y, ZHANG J F, WANG D, et al. Electrodeposition cobalt sulfide nanosheet on laser-induced graphene as capacitive deionization electrodes for uranium adsorption[J]. Chemical Engineering Journal, 2023, 461: 142080.
    [98] LI L, ZHANG J B, PENG Z W, et al. High-performance pseudocapacitive microsupercapacitors from laser-induced graphene[J]. Advanced Materials, 2016, 28(5): 838-845.
    [99] ZHANG J B, REN M Q, LI Y, et al. In situ synthesis of efficient water oxidation catalysts in laser-induced graphene[J]. ACS Energy Letters, 2018, 3(3): 677-683. doi: 10.1021/acsenergylett.8b00042
    [100] GASS M H, BANGERT U, BLELOCH A L, et al. Free-standing graphene at atomic resolution[J]. Nature Nanotechnology, 2008, 3(11): 676-681. doi: 10.1038/nnano.2008.280
    [101] WU H, ZHANG W L, KANDAMBETH S, et al. Conductive metal-organic frameworks selectively grown on laser-scribed graphene for electrochemical microsupercapacitors[J]. Advanced Energy Materials, 2019, 9(21): 1900482.
    [102] PENG Z W, LIN J, YE R Q, et al. Flexible and stackable laser-induced graphene supercapacitors[J]. ACS Applied Materials & Interfaces, 2015, 7(5): 3414-3419.
    [103] PECH D, BRUNET M, DUROU H, et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon[J]. Nature Nanotechnology, 2010, 5(9): 651-654. doi: 10.1038/nnano.2010.162
    [104] EL-KADY M F, KANER R B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage[J]. Nature Communications, 2013, 4: 1475.
    [105] EL-KADY M F, STRONG V, DUBIN S, et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science, 2012, 335(6074): 1326-1330. doi: 10.1126/science.1216744
    [106] SHAN C S, YANG H F, SONG J F, et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene[J]. Analytical Chemistry, 2009, 81(6): 2378-2382. doi: 10.1021/ac802193c
    [107] AMBROSI A, CHUA C K, BONANNI A, et al. Electrochemistry of graphene and related materials[J]. Chemical Reviews, 2014, 114(14): 7150-7188. doi: 10.1021/cr500023c
    [108] PUMERA M. Electrochemistry of graphene, graphene oxide and other graphenoids: Review[J]. Electrochemistry Communications, 2013, 36(6): 14-18.
    [109] WANG H M, WANG H M, WANG Y L, et al. Laser-writing of Janus graphene/Kevlar textile for intelligent protective clothing[J]. ACS Nano, 2020, 14(3): 3219-3226. doi: 10.1021/acsnano.9b08638
    [110] ZANG X N, SHEN C W, CHU Y, et al. Laser-induced molybdenum carbide-graphene composites for 3D foldable paper electronics[J]. Advanced Materials, 2018, 30(26): 1800062.
    [111] SCHMIDT H, IHLEMANN J, WOLFF-ROTTKE B, et al. Ultraviolet laser ablation of polymers: Spot size, pulse duration, and plume attenuation effects explained[J]. Journal of Applied Physics, 1998, 83(10): 5458-5468. doi: 10.1063/1.367377
    [112] ZHANG P, TANG X L, PANG Y, et al. Flexible laser-induced-graphene omnidirectional sound device[J]. Chemical Physics Letters, 2020, 745: 137275.
    [113] CHEN X P, LUO F, YUAN M, et al. A dual-functional graphene-based self-alarm health-monitoring e-skin[J]. Advanced Functional Materials, 2019, 29(51): 1904706.
    [114] TAO L Q, TIAN H, LIU Y, et al. An intelligent artificial throat with sound-sensing ability based on laser induced graphene[J]. Nature Communications, 2017, 8: 14579. doi: 10.1038/ncomms14579
  • 加载中
图(9)
计量
  • 文章访问数:  759
  • HTML全文浏览量:  364
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-05
  • 修回日期:  2023-08-09
  • 录用日期:  2023-08-29
  • 网络出版日期:  2023-09-12
  • 刊出日期:  2024-06-15

目录

    /

    返回文章
    返回