留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

壳聚糖增强纳米纤维素-蒙脱土复合膜的结构与性能

汪云逸 邹楚文 尹冉 尤政通 王海刚

汪云逸, 邹楚文, 尹冉, 等. 壳聚糖增强纳米纤维素-蒙脱土复合膜的结构与性能[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 汪云逸, 邹楚文, 尹冉, 等. 壳聚糖增强纳米纤维素-蒙脱土复合膜的结构与性能[J]. 复合材料学报, 2024, 42(0): 1-11.
WANG Yunyi, ZOU Chuwen, YIN Ran, et al. Structure and properties of chitosan enhanced cellulose nanofiber-montmorillonite composite membrane[J]. Acta Materiae Compositae Sinica.
Citation: WANG Yunyi, ZOU Chuwen, YIN Ran, et al. Structure and properties of chitosan enhanced cellulose nanofiber-montmorillonite composite membrane[J]. Acta Materiae Compositae Sinica.

壳聚糖增强纳米纤维素-蒙脱土复合膜的结构与性能

基金项目: 国家重点研发计划课题(2023YFD2201404);黑龙江省自然科学基金(LH2022C010)
详细信息
    通讯作者:

    王海刚,博士,副教授,博士生导师,研究方向为生物质复合材料 E-mail: hgwang@nefu.edu.cn

  • 中图分类号: TB332;TB330.1

Structure and properties of chitosan enhanced cellulose nanofiber-montmorillonite composite membrane

Funds: National Natural Science Foundation of China (2023YFD2201404); Provincial Natural Science Funds of Heilongjiang China (LH2022C010)
  • 摘要: 利用纤维素和无机物模仿天然贝壳中高度有序的“砖-砂浆”结构制备高强度功能复合材料,是制备绿色包装膜的优秀选择,二者的界面结合是获得理想结构与性能的关键。本文以羧基化纤维素纳米纤维(CNFMG)和蒙脱土(MTM)纳米片制备膜材料,采用壳聚糖(CS)通过静电作用增强界面结合。研究了CS与CNFMG和MTM之间的静电相互作用对纳米复合材料结构、力学性能和热稳定性的影响。结果表明,复合膜中MTM以纳米片状形态有序地分散于CNFMG网络间。与CNFMG-MTM二元膜相比,CS加入后的三元膜拉伸强度达到119.2 MPa,强度提升一倍;断裂能达到10.9 MJ/m3,韧性提升四倍。复合膜为半透明状,具有良好的紫外屏蔽性,CS的加入也提升了复合膜的热稳定性。本文的研究结果可为纤维素基珍珠层仿生材料的研究和应用提供思路。

     

  • 图  1  壳聚糖(CS)-羧基化纤维素纳米纤维(CNFMG)-蒙脱土(MTM)复合膜的实物图和静电增强示意图

    Figure  1.  Photo and diagrammatic sketch about electrostatic enhancement of chitosan (CS)- carboxymethyl cellulose nanofibers (CNFMG)- montmorillonite (MTM) composite membrane

    图  2  MTM 纳米片性状表征:(a,b)AFM图、胶体丁达尔效应(b 插图);(c)厚度尺寸统计;(d)AFM三维示意;(e,f)透射电镜图

    Figure  2.  Characterization of MTM nano sheets: (a,b) AFM images、the colloidal Dingdall effect(illustrations in figure b); (c) thickness dimension statistics; (d) AFM 3 D schematic diagram; (e,f) TEM images

    图  3  (a) CNFMG的 AFM图;(b)对应(a)图中纤维直径高度示意图;(c,d) CNFMG的透射电镜图

    Figure  3.  AFM image (a) ; schematic diagram of fiber diameter and height corresponding to figure (b) and TEM images (c,d) of CNFMG

    图  4  纯 CNFMG膜(a-d);CCM-0.5(e-h)表面和拉伸断面;(j)贝壳 Semicassis bisulcate[1] ;(k)贝壳Fissurella crassa [1]的扫描电子显微镜(SEM)图像,EL(external layer)指外部层,ML 指中间层(middle layer),IL 指内部层(initial layer)

    Figure  4.  SEM iamges of surface and stretch section of pure CNFMG membrane (a-d); CCM-0.5 (e-h) and facture for Semicassis bisulcate(j) and Fissurella crassa (k), EL, external layer; ES, external surface of the shell; IL, internal layer;ML, middle layer

    图  5  不同 CS 添加量(0-30wt%)复合膜的小角 度 X射线衍射图谱(XRD )

    Figure  5.  XRD patterns of composite membranes with different CS additive rate(0-30wt%)

    图  6  MTM粉末、CNFMG膜和纳米复合膜的FTIR谱图

    Figure  6.  FITR patterns of MTM powder,CNFMG membrane and nano composite membranes.

    图  7  (a)纯CNFMG和复合薄膜的应力应变曲线;(b)孔隙率;(c)拉伸强度;(d)模量;(e)断裂伸长率;(f)断裂能

    Figure  7.  Stress-strain cureves (a);porosity(b);tensile strength (c);modulus (d); elongation at break (e) and fracture energy (f) of pure CNFMG membrane and composite membranes

    图  8  原料及复合膜的热重谱图:(a) TGA曲线;(b) DTG曲线

    Figure  8.  TGA patterns (a) and DTG (b) patterns of raw materials and composite membranes

    图  9  (a,b)不同CS含量的CS-CNFMG -MTM混合液;(c,d)复合膜的紫外-可见光光谱图

    Figure  9.  UV-vis spectrums of CS-CNFMG-MTM mixed liquids (a,b) and composite membranes (c,d) with different CS rate

    表  1  试样的配比与命名

    Table  1.   Naming of membrane with different CS ratio

    Name CS/wt% CNFMG/MTM(mass ratio)
    CNFMG
    CCM-0 0 1∶1
    CCM-0.25 0.25 1∶1
    CCM-0.5 0.5 1∶1
    CCM-0.75 0.75 1∶1
    CCM-1.0 1.0 1∶1
    CCM-10 10 1∶1
    CCM-20 20 1∶1
    CCM-30 30 1∶1
    Notes: CCM—CS-CNFMG-MTM
    下载: 导出CSV
  • [1] YAO H B, GE J, MAO L B, et al. 25th Anniversary Article: Artificial Carbonate Nanocrystals and Layered Structural Nanocomposites Inspired by Nacre: Synthesis, Fabrication and Applications[J]. Advanced Materials, 2014, 26(1): 163-188. doi: 10.1002/adma.201303470
    [2] YANG X, LI L, NISHIYAMA Y, et al. Processing strategy for reduced energy demand of nanostructured CNF/clay composites with tailored interfaces[J]. Carbohydrate Polymers, 2023, 312: 120788
    [3] DING F, LIU J, ZENG S, et al. Biomimetic nanocoatings with exceptional mechanical, barrier, and flame-retardant properties from large-scale one-step coassembly[J]. Science Advances, 2017, 3(7): e1701212. doi: 10.1126/sciadv.1701212
    [4] MEDINA L, NISHIYAMA Y, DAICHO K, et al. Nanostructure and Properties of Nacre-Inspired Clay/Cellulose Nanocomposites-Synchrotron X-ray Scattering Analysis[J]. Macromolecules, 2019, 52(8): 3131-3140. doi: 10.1021/acs.macromol.9b00333
    [5] YAO K, HUANG S, TANG H, et al. Bioinspired Interface Engineering for Moisture Resistance in Nacre-Mimetic Cellulose Nanofibrils/Clay Nanocomposites[J]. Acs Applied Materials & Interfaces, 2017, 9(23): 20169-20178.
    [6] LIU A, WALTHER A, IKKALA O, et al. Clay Nanopaper with Tough Cellulose Nanofiber Matrix for Fire Retardancy and Gas Barrier Functions[J]. Biomacromolecules, 2011, 12(3): 633-641. doi: 10.1021/bm101296z
    [7] PODSIADLO P, KAUSHIK A K, ARRUDA E M, et al. Ultrastrong and stiff layered polymer nanocomposites[J]. Science, 2007, 318(5847): 80-83. doi: 10.1126/science.1143176
    [8] LIANG K, SPIESZ E M, SCHMIEDEN D T, et al. Bioproduced Polymers Self-Assemble with Graphene Oxide into Nanocomposite Films with Enhanced Mechanical Performance[J]. ACS Nano, 2020, 14(11): 14731-14739. doi: 10.1021/acsnano.0c00913
    [9] 梁虎, 张礼兵, 吴婷, et al. 基于醋酸纤维素/MXene复合纤维膜的柔性触觉传感器[J]. 复合材料学报, 2023, 40(11): 6228-6240.

    LIANG Hu, ZHANG Libing, WU Ting, et al. A flexible tactile sensor based on cellulose acetate/MXene composite fiber membrane[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6228-6240(in Chinese).
    [10] 孙泽营, 姜大伟, 孙才英. 石墨烯(碳纳米管)-纤维素/角蛋白复合传感薄膜的制备[J]. 复合材料学报, 2023, 42(0): 1-9.

    SUN Zeying, JIANG Dawei, SUN Caiying. Preparation of graphene (carbon nanotubes) cellulose/keratin composite sensing thin films [J] Acta Materiae Compositae Sinica, 2023, 42 (0): 1-9(in Chinese).
    [11] SUN C, FANG Z, QIN F, et al. Insight into the dispersive mechanism of Carboxylated Nanofibrilllated cellulose for individual montmorillonite in water[J]. Composites Part B:Engineering, 2019, 177: 107399. doi: 10.1016/j.compositesb.2019.107399
    [12] RONG N, XU Z, ZHAI S, et al. Directional, super-hydrophobic cellulose nanofiber/polyvinyl alcohol/montmorillonite aerogels as green absorbents for oil/water separation[J]. IET Nanobiotechnology, 2021, 15(1): 135-146. doi: 10.1049/nbt2.12008
    [13] LUO J, MA X, ZHOU X, et al. Construction of physically crosslinked cellulose nanofibrils/alkali lignin/montmorillonoite/polyvinyl alcohol network hydrogel and its application in methylene blue removal[J]. Cellulose, 2021, 28: 5531-5543. doi: 10.1007/s10570-021-03847-1
    [14] JIN B, WANG H, XU H, et al. Bio-inspired nacre-like composites with excellent mechanical properties, gas-barrier function and fire-retardant performances based on self-assembly between hyperbranched poly(amido amine)s and montmorillonite[J]. Rsc Advances, 2023, 13(6): 3661-3668. doi: 10.1039/D2RA07647K
    [15] YAO H B, TAN Z H, FANG H Y, et al. Artificial Nacre-like Bionanocomposite Films from the Self-Assembly of Chitosan-Montmorillonite Hybrid Building Blocks[J]. Angewandte Chemie-International Edition, 2010, 49(52): 10127-10131.
    [16] XU D, WANG S, BERGLUND L A, et al. Surface Charges Control the Structure and Properties of Layered Nanocomposite of Cellulose Nanofibrils and Clay Platelets[J]. Acs Applied Materials & Interfaces, 2021, 13(3): 4463-4472.
    [17] GUO T, GU L, ZHANG Y, et al. Bioinspired self-assembled films of carboxymethyl cellulose-dopamine/montmorillonite[J]. Journal of Materials Chemistry A, 2019, 7(23): 14033-14041.
    [18] LI W, LIU J, LIANG B, et al. Small molecule hydrogen-bonded toughen nacre-inspired montmorillonite-konjac glucomannan-glycerin film with superior mechanical, transparent and UV-blocking properties[J]. Composites Part B-Engineering, 2021, 204: 108492.
    [19] SUN C, LI G H, WANG J Y, et al. Transparent montmorillonite/cellulose nanofibril nanocomposite films: the influence of exfoliation degree and interfacial interaction[J]. Cellulose, 2022, 29(13): 7111-7124.
    [20] MING S, CHEN G, HE J, et al. Highly Transparent and Self-Extinguishing Nanofibrillated Cellulose-Monolayer Clay Nanoplatelet Hybrid Films[J]. Langmuir, 2017, 33(34): 8455-8462. doi: 10.1021/acs.langmuir.7b01665
    [21] TORGNYSDOTTER A, WAGBERG L. Influence of electrostatic interactions on fibre/fibre joint and paper strength[J]. Nordic Pulp & Paper Research Journal, 2004, 19(4): 440-447.
    [22] LI J, SONG X Y, PAN J F, et al. Adsorption and flocculation of bentonite by chitosan with varying degree of deacetylation and molecular weight[J]. International Journal of Biological Macromolecules, 2013, 62: 4-12. doi: 10.1016/j.ijbiomac.2013.08.009
    [23] LAUFER G, KIRKLAND C, CAIN A A, et al. Clay-Chitosan Nanobrick Walls: Completely Renewable Gas Barrier and Flame-Retardant Nanocoatings[J]. Acs Applied Materials & Interfaces, 2012, 4(3): 1643-1649.
    [24] ZHANG X F, ELSAYED I, NAVARATHNA C, et al. Biohybrid Hydrogel and Aerogel from Self-Assembled Nanocellulose and Nanochitin as a High-Efficiency Adsorbent for Water Purification[J]. Acs Applied Materials & Interfaces, 2019, 11(50): 46714-46725.
    [25] ZHAO C, ZHANG H, ZENG X, et al. Enhancing the inter-fiber bonding properties of cellulosic fibers by increasing different fiber charges[J]. Cellulose, 2016, 23(3): 1617-1628.
    [26] FU P J, XU K L, SONG H Z, et al. Preparation, stability and rheology of polyacrylamide/pristine layered double hydroxide nanocomposites[J]. Journal of Materials Chemistry, 2010, 20(19): 3869-3876.
    [27] WU K, FANG J, MA J, et al. Achieving a Collapsible, Strong, and Highly Thermally Conductive Film Based on Oriented Functionalized Boron Nitride Nanosheets and Cellulose Nanofiber[J]. Acs Applied Materials & Interfaces, 2017, 9(35): 30035-30045.
    [28] LI L, MADDALENA L, NISHIYAMA Y, et al. Recyclable nanocomposites of well-dispersed 2D layered silicates in cellulose nanofibril (CNF) matrix[J]. Carbohydrate Polymers, 2022, 279: 119004.
    [29] ZHAO H, YUE Y, ZHANG Y, et al. Ternary Artificial Nacre Reinforced by Ultrathin Amorphous Alumina with Exceptional Mechanical Properties[J]. Advanced Materials, 2016, 28(10): 2037-2042.
    [30] AHNAGRO I, DRZYMALA P, BERENT K, et al. New Crystallographic Relationships in Biogenic Aragonite: The Crossed-Lamellar Microstructures of Mollusks[J]. Crystal Growth & Design, 2016, 16(4): 2083-2093.
    [31] RAUT H K, SCHWARTZMAN A F, DAS R, et al. Tough and Strong: Cross-Lamella Design Imparts Multifunctionality to Biomimetic Nacre[J]. Acs Nano, 2020, 14(8): 9771-9779.
    [32] YANG X, LI L, NISHIYAMA Y, et al. Processing strategy for reduced energy demand of nanostructured CNF/clay composites with tailored interfaces[J]. Carbohydrate Polymers, 2023, 312: 120788.
    [33] ENESCU D, GARDRAT C, CRAMAIL H, et al. Bio-inspired films based on chitosan, nanoclays and cellulose nanocrystals: structuring and properties improvement by using water-evaporation-induced self-assembly[J]. Cellulose, 2019, 26(4): 2389-23401.
    [34] MARCHESSAULT R H, PEARSON F G, LIANG C Y. Infrared spectra of crystalline polysaccharides. VI. Effect of orientation on the tilting spectra of chitin films[J]. Biochimica et Biophysica Acta, 1960, 45: 499-507.
    [35] CHEN G G, QI X M, GUAN Y, et al. High Strength Hemicellulose-Based Nanocomposite Film for Food Packaging Applications[J]. Acs Sustainable Chemistry & Engineering, 2016, 4(4): 1985-1993.
    [36] LIU A, BERGLUND L A. Clay nanopaper composites of nacre-like structure based on montmorrilonite and cellulose nanofibers-Improvements due to chitosan addition[J]. Carbohydrate Polymers, 2012, 87(1): 53-60.
  • 加载中
计量
  • 文章访问数:  158
  • HTML全文浏览量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-01
  • 修回日期:  2023-11-28
  • 录用日期:  2023-12-18
  • 网络出版日期:  2024-01-13

目录

    /

    返回文章
    返回