留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

吸波材料/结构及吸波-承载功能一体化结构研究进展

王江涛 陈帅 沈承 高金翎 刘家贵 赵振宇 王昕 李振 王鹏飞 孟晗 卢天健

王江涛, 陈帅, 沈承, 等. 吸波材料/结构及吸波-承载功能一体化结构研究进展[J]. 复合材料学报, 2024, 42(0): 1-16.
引用本文: 王江涛, 陈帅, 沈承, 等. 吸波材料/结构及吸波-承载功能一体化结构研究进展[J]. 复合材料学报, 2024, 42(0): 1-16.
WANG Jiangtao, CHEN Shuai, SHEN Cheng, et al. Progress of wave-absorbing materials/structures and wave absorbing-load bearing multifunctional structures[J]. Acta Materiae Compositae Sinica.
Citation: WANG Jiangtao, CHEN Shuai, SHEN Cheng, et al. Progress of wave-absorbing materials/structures and wave absorbing-load bearing multifunctional structures[J]. Acta Materiae Compositae Sinica.

吸波材料/结构及吸波-承载功能一体化结构研究进展

基金项目: 国家自然科学基金 (12202188,12032010, 12302472);国家高层次人才经费(YQR23023)
详细信息
    通讯作者:

    孟晗,博士研究生,教授,博士生导师,研究方向为轻量化多功能一体化结构设计与性能研究 E-mail: menghan@nuaa.edu.cn

  • 中图分类号: TB332; TB333; V19

Progress of wave-absorbing materials/structures and wave absorbing-load bearing multifunctional structures

Funds: National Natural Science Foundation of China (12202188,12032010, 12302472); National High-Level Talent Fund (YQR23023)
  • 摘要: 随着现代科学技术的迅速发展,电子信息设备的普及极大改善了人们的生活质量,但随之也带来了电磁干扰与电磁辐射等安全问题,尤其是对于国防军工领域,雷达测试技术的改进升级使得武器装备的生存力面对巨大威胁。因此迫切需要开发高性能的电磁吸波材料来抑制电磁干扰与辐射,防止信息泄露。本文以吸波材料与吸波结构应用为切入点,对各种吸波材料的电磁波损耗机制进行了系统地整理,同时探讨了吸波结构的主要应用手段,并以此为基础阐述了吸波材料与吸波结构的研究现状与发展趋势,进一步分析了目前研究发展中吸波材料与吸波结构具备的优势与不足,最后提炼出了吸波领域未来需要解决的关键科学问题,针对现今吸波材料与结构功能一体化研究的不足,提出了关于未来研究方向的关键性建议。在此所讨论的方法与提出的策略有望对未来吸波-承载结构创新型设计提供一定的指导。

     

  • 图  1  吸波材料结构功能一体化结构应用

    Figure  1.  Wave-absorbing material structure functionally integrated structure application

    图  2  (a)空心碳纳米球吸收机制[30];(b)氧化三铁@聚吡咯复合材料[31]

    Figure  2.  (a) Absorption mechanism of hollow carbon nanospheres[30]; (b) Triiron oxide@polypyrrole composites[31]

    图  3  极化弛豫模型

    Figure  3.  Polarization relaxation model

    图  4  (a)Ni和粉煤灰功能陶瓷[34];(b)核-壳fesal/Al2O3/SiO2(FSA@GCLs)矩阵[37]

    Figure  4.  (a) Ni and fly ash functional ceramics[34]; (b) Core-shell fesal/Al2O3/SiO2(FSA@GCLs)matrices[37]

    图  5  维网状结构的羰基铁(CI)/碳泡沫(CF)新型磁介质复合材料[43]

    Figure  5.  Carbonyl iron (CI)/carbon foam (CF) novel magnetic dielectric composites with dimensional mesh structure[43]

    图  6  (a)磁热转换机制;(b)干涉相消机制

    Figure  6.  (a) Mechanism of action I; (b) Mechanism of action II

    图  7  吸波超表面结构示意图

    Figure  7.  Schematic diagram of wave-absorbing ultra-surface structure

    图  8  (a)ITO设计宽带吸收器[63];(b)碳化棉填充台阶状结构[64]

    Figure  8.  (a) ITO design broadband absorber[63]; (b) Carbonized cotton filled step-like structure[64]

    图  9  (a)基于蝴蝶翅膀陀螺微结构[75];(b)新型曲壁复合蜂窝结构[76]

    Figure  9.  (a) Based on butterfly wing gyro microstructure[75]; (b) New curved-wall composite honeycomb structure[76]

    图  10  (a)吸波蜂窝夹心复合材料[78];(b)超高密度聚乙烯纤维树脂复合材料[79];(c)三维正交碳纤维/芳纶纤维混杂编织物增强环氧复合材料[80]

    Figure  10.  (a) Wave-absorbing honeycomb sandwich composites[78]; (b) Ultra-high density polyethylene fiber resin composites[79]; (c) Three-dimensional orthogonal carbon fiber/aramid fiber hybrid braid reinforced epoxy composites[80]

    图  11  (a)玻纤板层间进行缝合并嵌入方块图案电阻膜[81];(b)两层台阶状超表面结构[82]

    Figure  11.  (a) Stitching and embedding of square-patterned resistive films between layers of fiberglass panels[81]; (b) Two-layer step-like hypersurface structure[82]

    图  12  (a)复合材料方形蜂窝结构[84];(b)双层斜蜂窝夹层结构[85]

    Figure  12.  (a) Composite square honeycomb structure[84]; (b) Double-layer inclined honeycomb sandwich structure[85]

    图  13  电磁波传播示意图

    Figure  13.  Schematic of electromagnetic wave propagation

  • [1] LI S, HUANG H, WU S, et al. Study on Microwave Absorption Performance Enhancement of Metamaterial/Honeycomb Sandwich Composites in the Low Frequency Band[J]. Polymers, 2022, 14(7): 1424. doi: 10.3390/polym14071424
    [2] DAI B, MA Y, DONG F, et al. Overview of MXene and conducting polymer matrix composites for electromagnetic wave absorption[J]. Advanced Composites and Hybrid Materials, 2022, 5(2): 704-754. doi: 10.1007/s42114-022-00510-6
    [3] 纪正江, 董佳晨, 梁良, 等. 面向飞机蒙皮的碳纤维预浸料吸波承载一体化层合结构设计[J]. 复合材料学报, 2023, 42: 1-11.

    JI Zhengjiang, DONG Jiachen, LIANG Liang, et al. Design of Carbon Fiber Prepreg Wave-absorbing and Carrying Integrated Laminated Structures for Aircraft Skins[J]. Acta Materiae Compositae Sinica, 2023, 42: 1-11(in Chinese).
    [4] 樊益泽, 刘亚青, 苏晓岗, 等. 基于超材料的微波吸收复合材料研究进展[J]. 化工新型材料, 2022, 50(3): 236-245.

    FAN Yize, LIU Yaqing, SU Xiaogang, et al. Advances in microwave absorbing composites based on metamaterials[J]. New Chemical Materials, 2022, 50(3): 236-245(in Chinese).
    [5] LUO F, LIU D, CAO T, et al. Study on broadband microwave absorbing performance of gradient porous structure[J]. Advanced Composites and Hybrid Materials, 2021, 4(3): 591-601. doi: 10.1007/s42114-021-00275-4
    [6] WANG R, LIU W, ZHOU X, et al. Electromagnetic wave-absorption and bending properties of double-layer honeycomb 3D woven composites: experiment and simulation[J]. Journal of the Textile Institute, 2023, 11: 2206085.
    [7] YANG S, ZHU Z, ZHOU W. et al. Composite structure design of a broadband metamaterial absorber based on magnetic composites[J]. Journal of Magnetism and Magnetic Materials, 2022, 564: 170123. doi: 10.1016/j.jmmm.2022.170123
    [8] 张明伟, 曲冠达, 庞梦瑶, 等. 电磁屏蔽机制及涂敷/结构型吸波复合材料研究进展[J]. 材料导报, 2021, 35: 62-70.

    ZAHNG Mingwei, QU Guanda, PANG Mengyao, et al. Electromagnetic Shielding Mechanism and Research Progress of Coated/Structured Wave-absorbing Composites[J]. Materials Herald, 2021, 35: 62-70(in Chinese).
    [9] 吴海华, 刘力, 蔡宇, 等. 磁/电介质复合材料结构型吸波体制备及吸波性能[J]. 材料热处理学报, 2020, 41(5): 35-40.

    WU Haihua, LIU Li, CAI Yu, et al. Preparation and wave-absorbing properties of structural wave-absorbing systems made of magnetic/dielectric composites[J]. Journal of Heat Treatment of Materials, 2020, 41(5): 35-40(in Chinese).
    [10] LIAO Q, HE M, ZHOU Y, et al. Highly Cuboid-Shaped Heterobimetallic Metal-Organic Frameworks Derived from Porous Co/ZnO/C Microrods with Improved Electromagnetic Wave Absorption Capabilities[J]. Acs Applied Materials & Interfaces, 2018, 10(34): 29136-29144.
    [11] LIU J, ZHANG L, WU H. Electromagnetic wave-absorbing performance of carbons, carbides, oxides, ferrites and sulfides: review and perspective[J]. Journal of Physics D-Applied Physics, 2021, 54(20): 203001. doi: 10.1088/1361-6463/abe26d
    [12] WANG B, WU Q, FU Y, et al. A review on carbon/magnetic metal composites for microwave absorption[J]. Journal of Materials Science & Technology, 2021, 86: 91-109.
    [13] YANG X, DUAN Y, LI S, et al. Constructing three-dimensional reticulated carbonyl iron/carbon foam composites to achieve temperature-stable broadband microwave absorption performance[J]. Carbon, 2022, 188: 376-384. doi: 10.1016/j.carbon.2021.12.044
    [14] HAN Y, HE M, HU J, et al. Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band[J]. Nano Research, 2023, 16(1): 1773-17738. doi: 10.1007/s12274-022-5111-y
    [15] ZHANG Z, TAN J, GU W, et al. Cellulose-chitosan framework/polyailine hybrid aerogel toward thermal insulation and microwave absorbing application[J]. Chemical Engineering Journal, 2020, 395: 125190. doi: 10.1016/j.cej.2020.125190
    [16] QU B, ZHU C, LI C, et al. Coupling Hollow Fe3O4-Fe Nanoparticles with Graphene Sheets for High-Performance Electromagnetic Wave Absorbing Material[J]. Acs Applied Materials & Interfaces, 2016, 8(6): 3730-3735.
    [17] WANG J, WANG B, WANG Z, et al. Synthesis of 3D flower-like ZnO/ZnCo2O4 composites with the heterogeneous interface for excellent electromagnetic wave absorption properties[J]. Journal of Colloid and Interface Science, 2021, 586: 479-490. doi: 10.1016/j.jcis.2020.10.111
    [18] SHU J-C, HUANG X-Y, CAO M-S. Assembling 3D flower-like Co3O4-MWCNT architecture for optimizing low-frequency microwave absorption[J]. Carbon, 2021, 174: 638-46. doi: 10.1016/j.carbon.2020.11.087
    [19] XIANG Z, SONG Y, XIONG J, et al. Enhanced electromagnetic wave absorption of nanoporous Fe3O4@carbon composites derived from metal-organic frameworks[J]. Carbon, 2019, 142: 20-31. doi: 10.1016/j.carbon.2018.10.014
    [20] YANG G, YUAN G, ZHANG J, et al. Porous Electromagnetic Wave Absorbing Materials[J]. Progress in Chemistry, 2023, 35(3): 445-457.
    [21] BAI Y-H, XIE B, LI H, et al. Mechanical properties and electromagnetic absorption characteristics of foam Cement-based absorbing materials[J]. Construction and Building Materials, 2022, 330: 127221. doi: 10.1016/j.conbuildmat.2022.127221
    [22] PANG H, DUAN Y, DAI X, et al. The electromagnetic response of composition-regulated honeycomb structural materials used for broadband microwave absorption[J]. Journal of Materials Science & Technology, 2021, 88: 203-214.
    [23] HUANG Y, YUAN X, CHEN M, et al. Ultrathin Flexible Carbon Fiber Reinforced Hierarchical Metastructure for Broadband Microwave Absorption with Nano Lossy Composite and Multiscale Optimization[J]. Acs Applied Materials & Interfaces, 2018, 10(51): 44731-44740.
    [24] JIAO Z, HUYAN W, YANG F, et al. Achieving Ultra-Wideband and Elevated Temperature Electromagnetic Wave Absorption via Constructing Lightweight Porous Rigid Structure[J]. Nano-Micro Letters, 2022, 14(11): 7308042.
    [25] HU P, DONG S, YUAN F, et al. Hollow carbon microspheres modified with NiCo2S4 nanosheets as a high-performance microwave absorber[J]. Advanced Composites and Hybrid Materials, 2022, 5(1): 469-480. doi: 10.1007/s42114-021-00318-w
    [26] 王彩霞, 刘元军, 磁损耗型吸波材料的发展现状[J]. 研究与技术, 2021, 58(2): 27-32.

    WANG Caixia, LIU Yuanjun, et al. Development status of magnetic loss-type wave-absorbing materials[J]. Research and Technology, 2021, 58(2): 27-32(in Chinese).
    [27] LI Q, ZHAO X, ZHANG Z, et al. Architecture Design and Interface Engineering of Self-assembly VS4/rGO Heterostructures for Ultrathin Absorbent[J]. Nano-Micro Letters, 2022, 14(1): 67. doi: 10.1007/s40820-022-00809-5
    [28] QIN M, ZHANG L, WU H. et al. Dielectric Loss Mechanism in Electromagnetic Wave Absorbing Materials[J]. Advanced Science, 2022, 9(10): 2105553. doi: 10.1002/advs.202105553
    [29] YANG Y, SONG C, PEI R, et al. Design, characterization and fabrication of a flexible broadband metamaterial absorber based on textile[J]. Additive Manufacturing, 2023, 69: 103537. doi: 10.1016/j.addma.2023.103537
    [30] WEN G, ZHAO X, LIU Y, et al. Simple, controllable fabrication and electromagnetic wave absorption properties of hollow Ni nanosphere[J]. Journal of Materials Science-Materials in Electronics, 2019, 30(3): 2166-2176. doi: 10.1007/s10854-018-0488-9
    [31] TIAN X K, XU X L, BO G X, et al. A 3D flower-like Fe3O4@PPy composite with core-shell heterostructure as a lightweight and efficient microwave absorbent[J]. Journal of Alloys and Compounds, 2022, 923: 166416. doi: 10.1016/j.jallcom.2022.166416
    [32] XING S, LEIMEI S, YANGHAO F, et al. Microwave absorption properties of single-walled carbon nanotubes-CoFe2O4 double-layer composites[J]. Acta Materiae Compositae Sinica, 2018, 35(5): 1279-1287.
    [33] LU J L, ZHANG X Q, LIU D D, et al. Review of Dielectric Carbide, Oxide, and Sulfide Nanostructures for Electromagnetic Wave Absorption[J]. Acs Applied Nano Materials, 2023, 6(17): 15347-15366. doi: 10.1021/acsanm.3c02857
    [34] WANG Y, LUO F, ZHOU W, et al. Dielectric and Microwave Absorption Properties of TiC-Al2O3/Silica Coatings at High Temperature[J]. Journal of Electronic Materials, 2017, 46(8): 5225-5231. doi: 10.1007/s11664-017-5530-9
    [35] MA J, QUAN B, LIU W, et al. Application of unit polarization strategy to achieve high-performance electromagnetic absorption by designing ternary SiO2@TiO2-C composite[J]. Journal of Alloys and Compounds, 2017, 709: 796-801. doi: 10.1016/j.jallcom.2017.03.187
    [36] ZHU B, TIAN Y, WANG Y, et al. Construction of Ni-loaded ceramic composites for efficient microwave absorption[J]. Applied Surface Science, 2021, 538: 148018. doi: 10.1016/j.apsusc.2020.148018
    [37] GUO X, FENG Y, LIN X, et al. The dielectric and microwave absorption properties of polymer-derived SiCN ceramics[J]. Journal of the European Ceramic Society, 2018, 38(4): 1327-1333. doi: 10.1016/j.jeurceramsoc.2017.10.031
    [38] MAHMOODI M, ASLIBEIKI B, PEYMANFAR R, et al. Oleaster seed-derived activated carbon/ferrite nanocomposite for microwave absorption in the X-band range[J]. Frontiers in Materials, 2022, 9: 1088196. doi: 10.3389/fmats.2022.1088196
    [39] SUN C, CHENG C F, SUN M, et al. Facile synthesis and microwave absorbing properties of LiFeO2/ZnFe2O4 composite[J]. Journal of Magnetism and Magnetic Materials, 2019, 482: 79-83. doi: 10.1016/j.jmmm.2019.03.034
    [40] LEI Y M, YAO Z J, LIN H Y, et al. Synthesis and high-performance microwave absorption of reduced graphene oxide/Co-doped ZnNi ferrite/polyaniline composites[J]. Materials Letters, 2019, 236: 456-459. doi: 10.1016/j.matlet.2018.10.158
    [41] WU Y, WANG N, LIU X, et al. Effect of the metasurface on the electromagnetic wave absorption performance of cementitious materials[J]. Materials Letters, 2022, 329: 133185. doi: 10.1016/j.matlet.2022.133185
    [42] YANG J, WANG J, LI H, et al. MoS2/MXene Aerogel with Conformal Heterogeneous Interfaces Tailored by Atomic Layer Deposition for Tunable Microwave Absorption[J]. Advanced Science, 2022, 9(7): 2101988 doi: 10.1002/advs.202101988
    [43] 胡 睿, 杨伟涛, 石先锐, 等. 涂覆型电磁吸波复合材料的研究进展[J]. 中国胶黏剂, 2018, 27(10): 609-613.

    HU Rui, YANG Weitao, SHI Xianrui, et al. Research progress of coated electromagnetic wave-absorbing composites[J]. China Adhesives, 2018, 27(10): 609-613(in Chinese).
    [44] 班国东, 刘朝辉, 叶圣天, 等. 新型涂覆型雷达吸波材料的研究进展[J]. 表面技术, 2016, 45(6): 140-144.

    BAN Guodong, LIU Chaohui, YE Shengtian, et al. Research Progress of Novel Coated Radar Wave Absorbing Materials[J]. Surface Technology, 2016, 45(6): 140-144(in Chinese).
    [45] WU T, HUAN X, JIA X, et al. 3D printing nanocomposites with enhanced mechanical property and excellent electromagnetic wave absorption capability via the introduction of ZIF-derivative modified carbon fibers[J]. Composites Part B-Engineering, 2022, 233: 109658. doi: 10.1016/j.compositesb.2022.109658
    [46] ZHAO S, MA H, SHAO T, et al. Thermally stable ultra-thin and refractory microwave absorbing coating[J]. Ceramics International, 2021, 47(12): 17337-17344. doi: 10.1016/j.ceramint.2021.03.047
    [47] PANG L, WANG J, CHEN S A, et al. Multiple dielectric behavior of Cf-SiCNFs/Si3N4 ceramic composite at high temperatures[J]. Ceramics International, 2021, 47(3): 4127-4134. doi: 10.1016/j.ceramint.2020.09.289
    [48] LONG XY, HE LF, YE W. In Situ Formation of Fe3O4/La2O3 Coating on the Surface of Carbonaceous Nonwoven to Improve ItElectromagnetic Wave Absorption Property[J]. Journal of Eletronic Materials, 2020, 49(11): 6611-6621. doi: 10.1007/s11664-020-08437-8
    [49] LI R, QING Y, LI W, et al. The electromagnetic absorbing properties of plasma-sprayed TiC/Al2O3 coatings under oblique incident microwave irradiation[J]. Ceramics International, 2021, 47(16): 22864-22868. doi: 10.1016/j.ceramint.2021.04.306
    [50] ZHANG H, XIE A, WANG C, et al. Novel rGO/α-Fe2O3 composite hydrogel: synthesis, characterization and high performance of electromagnetic wave absorption[J]. Journal of Materials Chemistry A, 2013, 1(30): 8547-8552. doi: 10.1039/c3ta11278k
    [51] JIANG F, WEI X, ZHENG J. et al. Synthesis and electromagnetic characteristics of MnFe2O4/TiO2 composite material[J]. Materials Research Express, 2022, 9(10): 106101. doi: 10.1088/2053-1591/ac97de
    [52] MA C, MA W, WANG T, et al. An MXene coating with electromagnetic wave absorbing performance[J]. Inorganic Chemistry Communications, 2023, 151: 110565. doi: 10.1016/j.inoche.2023.110565
    [53] Liu Y, Qi X M, Deng X Y, et al. Snake Scale-Inspired Poly(vinylidene fluoride)/Ti3CNT x @Polypyrrole Coatings for Ultrawide-Bandwidth Microwave and Visible Light Absorption[J]. Acs Applied Materials& Interfaces, 2023, 15(23): 28491-28502.
    [54] WANG X K, SHI Z W, XU B S, et al. Study of Wave-Absorbing Coating Failure by Electrochemical Measurements[J]. Journal of Materials Engineering and Performance, 2019, 28(11): 7086-7096. doi: 10.1007/s11665-019-04433-0
    [55] HUANG Y Y, WU J. et al. Preparation and Characterization of Graphene Oxide/Polyaniline/ Carbonyl Iron Nanocomposites[J]. Materials, 2022, 15(2): 484. doi: 10.3390/ma15020484
    [56] WANG Y-Z, XU H-X, WANG C-H, et al. Research progress of electromagnetic metamaterial absorbers[J]. Acta Physica Sinica, 2020, 69(13): 134101. doi: 10.7498/aps.69.20200355
    [57] 郭飞, 杜红亮, 曲绍波, 等. 基于磁/电介质混合型基体的宽带超材料吸波体的设计与制备[J]. 物理学报, 2015, 64(7): 077801-077806. doi: 10.7498/aps.64.077801

    GUO Fei, DU Hongliang, QU Shaobo, et al. The design and preparation of the broadband super material inhalation body based on magnetic/electronics hybrid substrate[J]. Acta Physica Sinica, 2015, 64(7): 077801-077806(in Chinese). doi: 10.7498/aps.64.077801
    [58] 吕通, 张辰威, 刘甲, 等. 吸波超材料研究进展[J]. 复合材料学报, 2021, 38(1): 25-35.

    LV Tong, ZHANG Chenwei, LIU Jia, et al. Research Advances in Absorbing Materials for Electromagnetic Waves[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 25-35(in Chinese).
    [59] 王彦朝, 许河秀, 王朝辉, 等. 电磁超材料吸波体的研究进展[J]. 物理学报, 2020, 69(13): 134101-134113. doi: 10.7498/aps.69.20200355

    WANG Yanzhao, XU Hexiu, WANG Chaohui, et al. Research Advances in Electromagnetic Wave Absorbing Materials[J]. Acta Physica Sinica, 2020, 69(13): 134101-134113(in Chinese). doi: 10.7498/aps.69.20200355
    [60] LV T, ZHANG C, LIU J, et al. Research progress in metamaterial absorber[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 25-35.
    [61] EUN S-W, CHOI W-H, JANG H-K, et al. Effect of delamination on the electromagnetic wave absorbing performance of radar absorbing structures[J]. Composites Science and Technology, 2015, 116: 18-25. doi: 10.1016/j.compscitech.2015.04.001
    [62] OLSZEWSKA-PLACHA M, SALSKI B, JANCZAK D, et al. A Broadband Absorber With a Resistive Pattern Made of Ink With Graphene Nano-Platelets[J]. Ieee Transactions on Antennas and Propagation, 2015, 63(2): 565-572. doi: 10.1109/TAP.2014.2379932
    [63] ZHANG C, CHENG Q, YANG J, et al. Broadband metamaterial for optical transparency and microwave absorption[J]. Applied Physics Letters, 2017, 110(14): 044110.
    [64] SONG W-L, ZHOU Z, WANG L-C, et al. Constructing Repairable Meta-Structures of Ultra-Broad-Band Electromagnetic Absorption from Three-Dimensional Printed Patterned Shells[J]. Acs Applied Materials & Interfaces, 2017, 9(49): 43179-43187.
    [65] CHEN X, CHEN X W, GU P F, et al. Ultra-wideband stealth antenna system based on multilayer wave-absorbing structure[J]. International Applied Computational Electromagnetics Society Symposium, 2022: 1-3.
    [66] LI W, ZHAO L, DAI Z, et al. A temperature-activated nanocomposite metamaterial absorber with a wide tunability[J]. Nano Research, 2018, 11(7): 3931-42. doi: 10.1007/s12274-018-1973-4
    [67] YANG S, LIU P, YANG M, et al. From Flexible and Stretchable Meta-Atom to Metamaterial: A Wearable Microwave Meta-Skin with Tunable Frequency Selective and Cloaking Effects[J]. Scientific Reports, 2016, 6: 21921. doi: 10.1038/srep21921
    [68] WANG B-X, WANG L-L, WANG G-Z, et al. Frequency Continuous Tunable Terahertz Metamaterial Absorber[J]. Journal of Lightwave Technology, 2014, 32(6): 1183-1189. doi: 10.1109/JLT.2014.2300094
    [69] KWON H, JANG M-S, YUN J-M, et al. Design and verification of simultaneously self-sensing and microwave-absorbing composite structures based on embedded SiC fiber network[J]. Composite Structures, 2021, 261: 113286. doi: 10.1016/j.compstruct.2020.113286
    [70] DU B, CAI M, WANG X, et al. Enhanced electromagnetic wave absorption property of binary ZnO/NiCo2O4 composites[J]. Journal of Advanced Ceramics, 2021, 10(4): 832-842. doi: 10.1007/s40145-021-0476-z
    [71] YANG P, LIU Y, ZHAO X, et al. Electromagnetic wave absorption properties of mechanically alloyed FeCoNiCrAl high entropy alloy powders[J]. Advanced Powder Technology, 2016, 27(4): 1128-1133. doi: 10.1016/j.apt.2016.03.023
    [72] CHENG L, SI Y, JI Z, et al. A novel linear gradient carbon fiber array integrated square honeycomb structure with electromagnetic wave absorption and enhanced mechanical performances[J]. Composite Structures, 2023, 305: 116510. doi: 10.1016/j.compstruct.2022.116510
    [73] MARRA F, LECINI J, TAMBURRANO A, et al. Electromagnetic wave absorption and structural properties of wide-band absorber made of graphene-printed glass-fibre composite[J]. Scientific Reports, 2018, 8: 12029. doi: 10.1038/s41598-018-30498-3
    [74] LAI W, WANG Y, HE J. et al. Effects of Carbonyl Iron Powder (CIP) Content on the Electromagnetic Wave Absorption and Mechanical Properties of CIP/ABS Composites[J]. Polymers, 2020, 12(8): 1694. doi: 10.3390/polym12081694
    [75] AN Q, LI D, LIAO W, et al. A Novel Ultra-Wideband Electromagnetic-Wave-Absorbing Metastructure Inspired by Bionic Gyroid Structures[J]. Advanced Materials, 2023, 35(26): 659.
    [76] LIU Z, ZHANG R, WANG S, et al. Design and fabrication of an all-composite ultra-broadband absorbing structure with superior load-bearing capacity[J]. Composites Science and Technology, 2023, 240: 110094. doi: 10.1016/j.compscitech.2023.110094
    [77] LIU Z, WANG S, SHAO J, et al. 3D radar stealth composite hierarchical grid structure with extremely broadband absorption performance and effective load bearing[J]. Composites Part B-Engineering, 2022, 247: 110316. doi: 10.1016/j.compositesb.2022.110316
    [78] KWAK B-S, CHOI W-H, NOH Y-H, et al. Nickel-coated glass/epoxy honeycomb sandwich composite for broadband RCS reduction[J]. Composites Part B-Engineering, 2020, 191: 107952. doi: 10.1016/j.compositesb.2020.107952
    [79] CHA J-H, JANG W-H, NOH J-E, et al. A space stealth and cosmic radiation shielding composite: Polydopamine-coating and multi-walled carbon nanotube grafting onto an ultra-high-molecular-weight polyethylene/hydrogen-rich benzoxazine composite[J]. Composites Science and Technology, 2022, 230: 109711. doi: 10.1016/j.compscitech.2022.109711
    [80] FAN W, YUAN L, D'SOUZA N, et al. Enhanced mechanical and radar absorbing properties of carbon/glass fiber hybrid composites with unique 3D orthogonal structure[J]. Polymer Testing, 2018, 69: 71-79. doi: 10.1016/j.polymertesting.2018.05.007
    [81] CHENG L, SI Y, JI Z, et al. A novel linear gradient carbon fiber array integrated square honeycomb structure with electromagnetic wave absorption and enhanced mechanical performances[J]. Composite Structures, 2023, 305: 116510. doi: 10.1016/j.compstruct.2022.116510
    [82] XIAO W, PENG G, ZHANG H, et al. Constructing a two-layer oblique honeycomb sandwich structure by LCD 3D printing for efficient electromagnetic wave absorbing[J]. Composite Structures, 2023, 305: 116449. doi: 10.1016/j.compstruct.2022.116449
    [83] ZHOU Q, YIN X, YE F, et al. A novel two-layer periodic stepped structure for effective broadband radar electromagnetic absorption[J]. Materials & Design, 2017, 123: 46-53.
    [84] LI W, WU T, WANG W, et al. Broadband patterned magnetic microwave absorber[J]. Journal of Applied Physics, 2014, 116(4): 044110. doi: 10.1063/1.4891475
    [85] WANG C, LEI H, HUANG Y, et al. Effects of stitch on mechanical and microwave absorption properties of radar absorbing structure[J]. Composite Structures, 2018, 195: 297-307. doi: 10.1016/j.compstruct.2018.04.077
    [86] WANG C, CHEN M, LEI H, et al. Radar stealth and mechanical properties of a broadband radar absorbing structure[J]. Composites Part B-Engineering, 2017, 123: 19-27. doi: 10.1016/j.compositesb.2017.05.005
  • 加载中
计量
  • 文章访问数:  94
  • HTML全文浏览量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-22
  • 修回日期:  2024-03-02
  • 录用日期:  2024-03-26
  • 网络出版日期:  2024-04-20

目录

    /

    返回文章
    返回