留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微观调控的聚丙烯/聚对苯二甲酸丁二酯/碳纳米管电磁屏蔽材料的制备与性能

张旭 谢林生 朱惠豪 李果 马玉录 王玉

张旭, 谢林生, 朱惠豪, 等. 基于微观调控的聚丙烯/聚对苯二甲酸丁二酯/碳纳米管电磁屏蔽材料的制备与性能[J]. 复合材料学报, 2024, 42(0): 1-9.
引用本文: 张旭, 谢林生, 朱惠豪, 等. 基于微观调控的聚丙烯/聚对苯二甲酸丁二酯/碳纳米管电磁屏蔽材料的制备与性能[J]. 复合材料学报, 2024, 42(0): 1-9.
ZHANG Xu, XIE LinSheng, ZHU HuiHao, et al. Preparation and properties of micromodulation-based polypropylene/polybutylene terephthalate/carbon nanotube electromagnetic shielding materials[J]. Acta Materiae Compositae Sinica.
Citation: ZHANG Xu, XIE LinSheng, ZHU HuiHao, et al. Preparation and properties of micromodulation-based polypropylene/polybutylene terephthalate/carbon nanotube electromagnetic shielding materials[J]. Acta Materiae Compositae Sinica.

基于微观调控的聚丙烯/聚对苯二甲酸丁二酯/碳纳米管电磁屏蔽材料的制备与性能

详细信息
    通讯作者:

    王玉,博士,助理研究员,研究方向为过程装备及材料加工 Email: wangyu_ecust@ecust.edu.cn

  • 中图分类号: TB332

Preparation and properties of micromodulation-based polypropylene/polybutylene terephthalate/carbon nanotube electromagnetic shielding materials

  • 摘要: 电子设备对外界环境造成的电磁污染已经成为继噪声污染、大气污染、水污染、固体废物污染之后的又一大公害,因此高性能电磁屏蔽材料的研制与开发已经成为现今材料科学研究的热点。本文通过调整聚丙烯(PP)、聚对苯二甲酸丁二酯(PBT)、碳纳米管(CNTs)在熔融共混过程中的共混方式,借助CNTs对PBT的定向迁移行为调控PP/PBT/CNTs共混物中聚合物相的相畴尺寸。通过形貌分析、动态流变和结晶行为测试,研究了复合材料微观形貌对其电磁屏蔽特性的影响。研究结果表明,相比于PP相,CNTs对PBT相的亲和作用更强,在四种共混方式中始终位于PBT相畴内;当采用PP/CNTs母料法制备PP/PBT/CNTs复合材料时,所得到的复合材料内部PBT的相畴尺寸更小,PP和PBT间的相容性更高,此时导电通路和界面面积都显著增加,复合材料内部形成了更加密集均匀的导电网络结构,因此所制备的聚合物基复合材料的电导率显著提升,达到29.60 s/m,电磁屏蔽效能在X波段(8.2-12.4 GHz)达到35.6 dB,远超过商业电磁屏蔽材料的需求。

     

  • 图  1  PP-CNTs/PBT复合材料微观形貌照片及氧元素分布图

    Figure  1.  Microscopic morphology and oxygen distribution of PP-CNTs/PBT composites

    图  2  不同共混方式所制备的复合材料的微观形貌照片

    Figure  2.  Microscopic morphology photographs of composites prepared by different blending methods

    图  3  不同共混方式所制备的复合材料刻蚀PP相后的微观形貌照片

    Figure  3.  Microscopic morphology photos of composite materials after etching PP phase prepared by different blending methods

    图  4  PP、PBT、PP-CNTs和PBT-CNTs的剪切黏度随剪切速率的变化曲线

    Figure  4.  The shear viscosity of PP, PBT, PP-CNTs and PBT-CNTs as a function of shear rate

    图  5  不同共混方式所制备的复合材料的动态流变性能

    Figure  5.  Dynamic rheological properties of composites prepared by different blending methods

    图  6  不同共混方式所制备复合材料的结晶曲线(a)和熔融曲线(b)

    Figure  6.  Crystallization curves (a)and melting curves(b)of composites prepared by different blending methods

    图  7  不同共混方式样品的EMI SE

    Figure  7.  EMI SE of samples with different blending methods

    图  8  不同共混方式样品的电导率

    Figure  8.  Conductivity of samples with different blending methods

    图  9  聚合物相相畴尺度对复合材料电磁屏蔽性能影响机制示意图

    Figure  9.  Schematic diagram of the influence mechanism of polymer phase domain scale on the electromagnetic shielding performance of composite materials

    图  10  不同共混方式所制备的复合材料拉伸强度柱状图

    Figure  10.  Histograms of the tensile strength of composites prepared by different blending methods

    表  1  样品名称及共混方式

    Table  1.   Sample names and blending methods

    Sample codeBlending method
    PP/PBT/CNTsOne-step method 12 min
    PP-PBT/CNTs①PP+PBT 3 min ②PP-PBT+CNTs 12 min
    PP-CNTs/PBT①PP+CNTs 12 min ②PP-CNTs+PBT 3 min
    PBT-CNTs/PP① PBT+CNTs 12 min ②PBT-CNTs+PP 3 min
    Notes: PP—polypropylene; PBT—polybutylene terephthalate; CNTs—carbon nanotubes
    下载: 导出CSV

    表  2  各组分表面张力值

    Table  2.   Surface tension values of each component

    Sample Surface tension/mJ·m−2
    $\gamma $ ${\gamma ^d}$ ${\gamma ^p}$
    PP 22.3 14.2 8.1
    PBT 24.1 16.4 7.7
    CNTs[27] 27.8 17.6 10.2
    Notes: $\gamma $—Surface energy; ${\gamma ^d}$—Dispersive surface energy; ${\gamma ^p}$—Polar surface energy.
    下载: 导出CSV
  • [1] CAO M, CAI Y Z, HE P, et al. 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding[J]. Chemical Engineering Journal, 2019, 359: 1265-1302. doi: 10.1016/j.cej.2018.11.051
    [2] LIANG C, LIU Y, RUAN Y, et al. Multifunctional sponges with flexible motion sensing and outstanding thermal insulation for superior electromagnetic interference shielding[J]. Composites Part A:Applied Science and Manufacturing, 2020, 139: 106143. doi: 10.1016/j.compositesa.2020.106143
    [3] 张梦辉, 马忠雷, 马建中, 等. 聚合物基电磁屏蔽复合材料的结构设计与性能研究进展[J]. 复合材料学报, 2021, 38(5): 1358-1370.

    ZHANG MengHui, MA ZhongLei, MA JianZhong, et al. Research progress on structural design and properties of polymer-based electromagnetic shielding composites[J]. Journal of Composite Materials, 2021, 38(5): 1358-1370(in Chinese).
    [4] 王喜花, 刘涛, 黄丽, 等. 静电纺丝技术制备复合纳米纤维电磁屏蔽及吸波材料的研究进展[J]. 复合材料学报, 2023, 40(3): 1300-1310.

    WANG XiHua, LIU Tao, HUANG Li, et al. Research progress on the preparation of composite nanofiber electromagnetic shielding and absorbing materials by electrospinning technology[J]. Journal of Composite Materials, 2023, 40(3): 1300-1310(in Chinese).
    [5] SINGH A K, SHISHKIN A, KOPPEL T, et al. A review of porous lightweight composite materials for electromagnetic interference shielding[J]. Composites Part B:Engineering, 2018, 149: 188-197. doi: 10.1016/j.compositesb.2018.05.027
    [6] WANG Y, LIU S, ZHU H, et al. The entangled conductive structure of CB/PA6/PP MFCs and their electromechanical properties[J]. Polymers, 2021, 13(6): 961. doi: 10.3390/polym13060961
    [7] LI J, CHEN J L, TANG X H, et al. Constructing nanopores in poly (oxymethylene)/multi-wall carbon nanotube nanocomposites via poly (l-lactide) assisting for improving electromagnetic interference shielding[J]. Journal of colloid and interface science, 2020, 565: 536-545. doi: 10.1016/j.jcis.2020.01.057
    [8] GAO Z, DONG Q, SHANG M, et al. Microstructure and properties of poly (butylene terephthalate)/poly (ethylene terephthalate) composites based on carbon nanotube s/graphene nanoplatelet s hybrid filler systems[J]. Journal of Applied Polymer Science, 2022, 139(9): 51733. doi: 10.1002/app.51733
    [9] MARKHAM D. Shielding: quantifying the shielding requirements for portable electronic design and providing new solutions by using a combination of materials and design[J]. Materials & Design, 1999, 21(1): 45-50.
    [10] ZENG Z, CHEN M, JIN H, et al. Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding[J]. Carbon, 2016, 96: 768-777. doi: 10.1016/j.carbon.2015.10.004
    [11] JASNA M, PUSHKARAN N K, MANOJ M, et al. Facile preparation of lightweight and flexible PVA/PEDOT: PSS/MWCNT ternary composite for high-performance EMI shielding in the X-band through absorption mechanism[J]. Journal of Electronic Materials, 2020, 49: 1689-1701. doi: 10.1007/s11664-019-07676-8
    [12] HSIAO S T, MA C C M, TIEN H W, et al. Using a non-covalent modification to prepare a high electromagnetic interference shielding performance graphene nanosheet/water-borne polyurethane composite[J]. Carbon, 2013, 60: 57-66. doi: 10.1016/j.carbon.2013.03.056
    [13] HSIAO S T, MA C C M, TIEN H W, et al. Effect of covalent modification of graphene nanosheets on the electrical property and electromagnetic interference shielding performance of a water-borne polyurethane composite[J]. ACS applied materials & interfaces, 2015, 7(4): 2817-2826.
    [14] SULTANA S M N, PAWAR S P, SUNDARARAJ U. Effect of processing techniques on EMI SE of immiscible PS/PMMA blends containing MWCNT: Enhanced intertube and interphase scattering[J]. Industrial & Engineering Chemistry Research, 2019, 58(26): 11576-11584.
    [15] TAO J R, YANG D, YANG Y, et al. Migration mechanism of carbon nanotubes and matching viscosity-dependent morphology in Co-continuous Poly (lactic acid)/Poly (ε-caprolactone) blend: Towards electromagnetic shielding enhancement[J]. Polymer, 2022, 252: 124963. doi: 10.1016/j.polymer.2022.124963
    [16] HE L, SHI Y, WANG Q, et al. Strategy for constructing electromagnetic interference shielding and flame retarding synergistic network in poly (butylene succinate) and thermoplastic polyurethane multilayered composites[J]. Composites Science and Technology, 2020, 199: 108324. doi: 10.1016/j.compscitech.2020.108324
    [17] CHEN J, LIAO X, LI S, et al. A promising strategy for efficient electromagnetic interference shielding by designing a porous double-percolated structure in MWCNT/polymer-based composites[J]. Composites Part A:Applied Science and Manufacturing, 2020, 138: 106059. doi: 10.1016/j.compositesa.2020.106059
    [18] 邱健, 姜治伟, 邢海平, 等. 具有隔离结构的聚丙烯/碳纳米管复合材料的制备及电磁屏蔽性能[J]. 应用化学, 2020, 40(8): 904-911. doi: 10.11944/j.issn.1000-0518.2020.08.200083

    QIU Jian, JIANG ZhiWei, XING HaiPing, et al. Preparation and electromagnetic shielding properties of polypropylene/carbon nanotube composites with isolation structure[J]. Applied Chemistry, 2020, 40(8): 904-911(in Chinese). doi: 10.11944/j.issn.1000-0518.2020.08.200083
    [19] SUMITA M, SAKATA K, ASAI S, et al. Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black[J]. Polymer bulletin, 1991, 25: 265-271. doi: 10.1007/BF00310802
    [20] GUO J, BRIGGS N, CROSSLEY S, et al. Morphology of polystyrene/poly (methyl methacrylate) blends: effects of carbon nanotubes aspect ratio and surface modification[J]. AIChE Journal, 2015, 61(10): 3500-3510. doi: 10.1002/aic.14943
    [21] CHEN G, LI P, HUANG Y, et al. Hybrid nanoparticles with different surface chemistries show higher efficiency in compatibilizing immiscible polymer blends[J]. Composites science and technology, 2014, 105: 37-43. doi: 10.1016/j.compscitech.2014.09.013
    [22] 李果, 谢林生, 罗日萍, 等. 叠片式密炼机转子结构对混合特性的影响[J]. 高分子材料科学与工程, 2014, 30(3): 134-138.

    LI Guo, XIE LinSheng, LUO RiPing, et al. Effect of rotor structure on mixing characteristics of laminated mixer[J]. Polymer Materials Science and Engineering, 2014, 30(3): 134-138(in Chinese).
    [23] SERAJI A A, BAJGHOLI A A. Dual role of nanoclay in the improvement of the in-situ nanofibrillar morphology in polypropylene/polybutylene terephthalate nanocomposites[J]. Journal of Industrial Textiles, 2022, 52: 15280837221133570.
    [24] ZHANG L Q, YANG B, TENG J, et al. Tunable electromagnetic interference shielding effectiveness via multilayer assembly of regenerated cellulose as a supporting substrate and carbon nanotubes/polymer as a functional layer[J]. Journal of Materials Chemistry C, 2017, 5(12): 3130-3138. doi: 10.1039/C6TC05516H
    [25] OWENS D K, WENDT R C. Estimation of the surface free energy of polymers[J]. Journal of applied polymer science, 1969, 13(8): 1741-1747. doi: 10.1002/app.1969.070130815
    [26] GUGGENHEIM E A. The principle of corresponding states[J]. The Journal of Chemical Physics, 1945, 13(7): 253-261. doi: 10.1063/1.1724033
    [27] CARDINAUD R, MCNALLY T. Localization of MWCNTs in PET/LDPE blends[J]. European polymer journal, 2013, 49(6): 1287-1297. doi: 10.1016/j.eurpolymj.2013.01.007
    [28] SHANG M, GAO Z, CHENG H, et al. Relationship between microstructure evolution and properties enhancement of carbon nanotubes-filled polybutylene terephthalate/polypropylene blends induced by thermal annealing[J]. Journal of Applied Polymer Science, 2022, 139(8): 51689. doi: 10.1002/app.51689
    [29] 陶瑞祥, 高珠怡, 尚梦瑶, 等. 聚合物基电磁屏蔽复合材料结构调控研究进展[J]. 工程塑料应用, 2021, 49(06): 165-174 .

    TAO RuiXiang, GAO ZhuYi, SHANG MengYao, et al. Research progress on structural regulation of polymer-based electromagnetic shielding composites[J]. Engineering plastics applications, 2021, 49(06): 165-174 (in Chinese).
  • 加载中
计量
  • 文章访问数:  49
  • HTML全文浏览量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-12
  • 修回日期:  2024-01-11
  • 录用日期:  2024-01-15
  • 网络出版日期:  2024-02-29

目录

    /

    返回文章
    返回