留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

曲面碳/碳蜂窝制备及其均布载荷下的力学性能

武豪 李玮洁 张中伟 刘愚 雷宇 史文童 董志超

武豪, 李玮洁, 张中伟, 等. 曲面碳/碳蜂窝制备及其均布载荷下的力学性能[J]. 复合材料学报, 2024, 42(0): 1-9.
引用本文: 武豪, 李玮洁, 张中伟, 等. 曲面碳/碳蜂窝制备及其均布载荷下的力学性能[J]. 复合材料学报, 2024, 42(0): 1-9.
WU Hao, LI Weijie, ZHANG Zhongwei, et al. Preparation of curved carbon/carbon honeycomb and its mechanical properties under uniform load[J]. Acta Materiae Compositae Sinica.
Citation: WU Hao, LI Weijie, ZHANG Zhongwei, et al. Preparation of curved carbon/carbon honeycomb and its mechanical properties under uniform load[J]. Acta Materiae Compositae Sinica.

曲面碳/碳蜂窝制备及其均布载荷下的力学性能

基金项目: 国家重点研发计划(2022YFB3706100)
详细信息
    通讯作者:

    李玮洁,博士,教授,博士生导师,研究方向为新型材料和结构的力学行为 E-mail: wj.li@bjtu.edu.cn

    张中伟,博士,研究员,博士生导师,研究方向为碳/碳、碳/陶、超高温陶瓷等复合材料 E-mail: zhangzhongw@163.com

    刘愚,博士,副研究员,硕士生导师,研究方向为碳基复合材料 E-mail: yu_liu@csu.edu.cn

  • 中图分类号: TB332

Preparation of curved carbon/carbon honeycomb and its mechanical properties under uniform load

Funds: National Key Research and Development Program of China (2022YFB3706100)
  • 摘要: 精密仪器对承载平台结构的要求不断提高,蜂窝结构由于其轻质和超高稳定性的特点而受到广泛关注。为了满足异形复合材料承载平台的需求,本文采用热压成型和树脂浸渍碳化-化学气相沉积(CVD)相结合的工艺制备了不同规格曲面碳/碳蜂窝结构试样,而后,根据曲面蜂窝的结构特点和服役环境,设计了均布载荷的测试方法对不同试样进行压缩试验,分析了蜂窝厚度、铺层角度、曲率半径等因素对曲面蜂窝力学性能的影响规律。结果表明,当蜂窝的径向厚度增大时,蜂窝壁屈曲程度增大,蜂窝双层壁处所受载荷增大,胶粘面开裂倾向更加显著;当蜂窝纤维取向由0°至45°转变蜂窝壁皱曲转变方式为不皱曲-韧性皱曲-塑性皱曲;当曲面蜂窝的曲率半径减小时,其破坏模式逐渐由双层壁脱粘开裂向蜂窝壁的屈曲断裂转变。本文制备的曲面碳/碳蜂窝压缩强度达到1.48 MPa,具备良好的力学性能,可以满足日益复杂化的航天结构承载需求。

     

  • 图  1  曲面蜂窝结构与胞元选取示意图

    Figure  1.  Curved honeycomb structure and cell selection diagram

    图  2  两种曲面蜂窝的构型

    Figure  2.  Two curved honeycomb configurations

    图  3  曲面碳/碳蜂窝的制备及测试过程

    Figure  3.  Preparation and testing process of C/C curved honeycomb

    图  4  曲面蜂窝载荷分解示意图

    Figure  4.  Diagram of honeycomb load decomposition of curved surface

    图  5  化学气相沉积后蜂窝样品的断口微观形貌

    Figure  5.  Fracture morphology of honeycomb samples after CVI

    图  6  C1规格蜂窝压缩破坏载荷-位移曲线

    Figure  6.  C1 honeycomb compression failure load-displacement curve

    图  7  C1规格蜂窝压缩破坏过程

    Figure  7.  C1 specification cellular compression breakdown process

    图  8  曲面蜂窝不同位置受力示意图

    Figure  8.  Force diagram of curved honeycomb at different positions

    图  9  C2规格蜂窝压缩破坏载荷-位移曲线

    Figure  9.  C2 honeycomb compression failure load-displacement curve

    图  10  C2规格蜂窝压缩破坏过程

    Figure  10.  C2 specification cellular compression breakdown process

    图  11  C1、C2、C3规格蜂窝压缩破坏载荷-位移曲线

    Figure  11.  C1, C2, C3 honeycomb compression failure load-displacement curve

    图  12  C3规格蜂窝压缩破坏过程

    Figure  12.  C3 specification cellular compression breakdown process

    图  13  C4规格蜂窝压缩破坏过程

    Figure  13.  C4 specification cellular compression destruction process

    图  14  C1、C5、C6规格蜂窝压缩破坏载荷-位移曲线

    Figure  14.  C1, C5, C6 honeycomb compression failure load-displacement curve

    图  15  C5规格蜂窝压缩破坏过程

    Figure  15.  C5 specification honeycomb compression failure process

    图  16  C6规格蜂窝压缩破坏过程

    Figure  16.  C6 specification honeycomb compression failure process

    表  1  不同设计参数下样品的规格与编号

    Table  1.   Sample specification and number under different design parameters

    Specification number Radius of curvature /mm Radial thickness /mm Fiber orientation weight /g density /(g·cm−3)
    C1 180 20 0°/90° 8.73 0.380
    C2 180 15 0°/90° 5.68 0.334
    C3 180 20 30°/−60° 7.74 0.337
    C4 180 20 45°/−45° 8.11 0.353
    C5 150 20 0°/90° 8.66 0.373
    C6 120 20 0°/90° 8.49 0.360
    下载: 导出CSV

    表  2  不同曲面径向厚度曲面蜂窝的压缩强度

    Table  2.   Compressive strength of curved honeycomb with different axial thickness

    Specification numberRadial thickness /mmCompressive strength /MPaDispersion ratio /%
    C1201.1574.15
    C2151.4223.47
    下载: 导出CSV

    表  3  不同纤维取向曲面蜂窝的压缩强度

    Table  3.   Compressive strength of honeycomb with different fiber orientation curved surfaces

    Specification number Fiber orientation Compressive strength /MPa Dispersion ratio /%
    C1 0°/90° 1.157 4.15
    C3 30°/−60° 1.476 7.79
    C4 45°/−45° 1.366 6.81
    下载: 导出CSV

    表  4  不同曲率半径曲面蜂窝的压缩强度

    Table  4.   Compressive strength of curved honeycomb with different curvature radius

    Specification numberRadius of curvature /mmCompressive strength /MPaDispersion ratio /%
    C11801.1574.15
    C51501.2377.11
    C61201.3221.29
    下载: 导出CSV
  • [1] Li F, Ruan P, Li T, et al. Application of car-bon-carbon composite for loading-carrying cylinder in lunar optical telescope[C]. SPIE-The International Society for Optical Engi-neering, Beijing, China, May 24, 2011.
    [2] Krumweide D E, Wonacott G D, Woida P M, et al. Carbon-carbon mirrors for exoatmospheric and space applications[C]//Optical Materials and Structures Technologies III. International Society for Optics and Photonics, 2007, 6666: 66660H.
    [3] Yao S, Xiao X, Xu P, et al. The impact performance of honeycomb-filled structures under eccentric loading for subway vehicles[J]. Thin-Walled Structure, 2018, 123: 360-70. doi: 10.1016/j.tws.2017.10.031
    [4] Wang J, Shi C, Yang N, et al. Strength, stiffness, and panel peeling strength of carbon fiber-reinforced composite sandwich structures with aluminum honeycomb cores for vehicle body[J]. Composite Structure, 2018, 184: 1189-96. doi: 10.1016/j.compstruct.2017.10.038
    [5] Bailly B, Cornu J L, Capdepuy B, et al. High stability carbon/carbon telescope structure[C]//Proc. of SPIE Vol. 2018, 10570: 105701T-1.
    [6] Bailly B, Cornu J, Capdepuy B, et al. Dimensionally stable structures. Spacecraft Structures[J]. Materials and Mechanical Engineering, 1996, 386: 361.
    [7] Panin, Fabio, Martine Lutz-Nivet, et al. Development of carbon-carbon sandwich panels[J]. EUROPEAN SPACE AGENCY-PUBLICATIONS-ESA SP, 2003, (540): 81-86.
    [8] Lutz M, Cornillon L, Vitupier Y, et al. Evaluation of ultrastable carbon/carbon sandwich structures joined with ceramic cement[C]//61st International Astronautical Congress, Prague, CZ. 2010: 1-4.
    [9] M. Salvo, V. Casalegno, Y. Vitupier, et al. Study of joining of carbon/carbon composites for ultra stable structures[J]. Journal of the European Ceramic Society 2010, (30): 1751-1759.
    [10] 刘宇峰, 张中伟, 许正辉, 等. 空间高稳定碳/碳蜂窝夹层结构制备及性能[J]. 宇航学报, 2020, 41(8): 1067-1075.

    Liu Yufeng, Zhang Zhongwei, Xu Zhenghui, et al. Preparation and performance of highly stable carbon/carbon honeycomb sandwich structures in space[J]. Journal of Astronautics, 2020, 41(8): 1067-1075(in Chinese).
    [11] 杨玉平, 张中伟, 李玮洁, 等. 碳/碳蜂窝制备工艺及压缩与剪切行为[J]. 复合材料学报, 2023, 40(12): 6639-6648.

    Yang Yuping, Zhang Zhongwei, Li Weijie, et al. Preparation process and compression and shear behavior of carbon/carbon honeycomb [J/OL][J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6639-6648.
    [12] Guo L, Wang H, Li W, et al. Multi-scale damage modeling and out-of-plane shear behavior of carbon/carbon honeycomb structure[J]. Thin-Walled Structures, 2023, 192: 111103. doi: 10.1016/j.tws.2023.111103
    [13] Guo L, Wang H, Yang Y, et al. A multi-scale damage model and mechanical behavior for novel light-weight C/C honeycomb sandwich structure[J]. Journal of Materials Research and Technology, 2023, (25): 2097-2111.
    [14] Shi Y, Dileep P, Heidenreich B, et al. Determination and modeling of bending properties for continuous fiber reinforced C/C-SiC sandwich structure with grid core[J]. Composite Structures, 2018, 204: 198-206. doi: 10.1016/j.compstruct.2018.07.086
    [15] Feng Yixiong, Qiu Hao, Gao Yicong, et al. Creative design for sandwich structures: A review[J]. International Journal of Advanced Robotic Systems 2020(17.3): 1729881420921327.
    [16] Li Wanxin, Sun Fangfang, Wang Peng, et al. A novel carbon fiber reinforced lattice truss sandwich cylinder: Fabrication and experiments[J]. Composites Part A:Applied Science and Manufacturing, 2016, (81): 313-322.
    [17] Li Z, Gao Y, Xue P, et al. Fabrication and failure mechanisms of all-composite honeycomb sandwich cylinder under the axial compression[J]. Composites Part A:Applied Science and Manufacturing, 2022, 161: 107075. doi: 10.1016/j.compositesa.2022.107075
    [18] Mark K. Pryor, Hygrothermal stability of laminated CFRP composite mirrors, Proc. SPIE 4013, UV, Optical, and IR Space Telescopes and Instruments: 655-662.
    [19] 熊健, 李志彬, 韦兴宇, 等. 一种复合材料曲面蜂窝的制备方法[P]. 黑龙江省: CN114055825A, 2022-02-18.

    Xiong Jian, Li Zhibin, Wei Xingyu, et al. A preparation method for composite material curved honeycomb [P] Heilongjiang Province: CN114055825A, 2022-02-18 (in Chinese).
    [20] Saito K, Pellegrino S, Nojima T. Manufacture of arbitrary cross-section composite honeycomb cores based on origami techniques[J]. Journal of Mechanical Design, 2014, 136(5): 051011. doi: 10.1115/1.4026824
    [21] Marinucci G, Taniguchi C. Development of Non-Plane Honeycomb Sandwich Composite for Structural Use[J]. Moving Forward With 50 Years of Leadership in Advanced Materials, 1994, 39: 457-468.
    [22] 郑德利. 蜂窝材料大型不规则曲面数字化加工技术[D]. 大连: 大连理工大学, 2009.

    Zheng Deli. Digital Processing Technology for Large Irregular Curved Surface of Honeycomb Materials [D]. Dalian: Dalian University of Technology, 2009 (in Chinese).
    [23] 刘禹峰. 蜂窝芯复杂曲面六轴超声切削刀具路径规划研究[D]. 大连: 大连交通大学, 2017.

    Liu Yufeng. Research on Tool Path Planning for Six Axis Ultrasonic Cutting of Honeycomb Core Complex Curved Surface [D]. Dalian: Dalian Jiaotong University, 2017 (in Chinese).
    [24] Wei X, Xiong J, Wang J, et al. New advances in fiber-reinforced composite honeycomb materials[J]. Science China Technological Sciences, 2020, 63(8): 1348-1370. doi: 10.1007/s11431-020-1650-9
    [25] Du B, Chen L, Wu W, et al. A novel hierarchical thermoplastic composite honeycomb cylindrical structure: fabrication and axial compressive properties[J]. Composite Science and Technology, 2018, 164: 136-45. doi: 10.1016/j.compscitech.2018.05.021
    [26] Liu H, Chen L, Cao J, et al. Axial compression deformability and energy absorption of hierarchical thermoplastic composite honeycomb graded structures[J]. Composite Structure, 2020, 254: 112851. doi: 10.1016/j.compstruct.2020.112851
    [27] Guo Y, Chen L, Zhu C, et al. Fabrication and axial compression test of thermoplastic composite cylindrical sandwich structures with hierarchical honeycomb core[J]. Composite Structure, 2021, 275: 114453. doi: 10.1016/j.compstruct.2021.114453
    [28] Liu H, Chen L, Zhou Y, et al. Repeated energy absorption and multiple compressive responses of thermoplastic composite hierarchical cylindrical structures[J]. Composite Science and Technology, 2022, 221: 109306. doi: 10.1016/j.compscitech.2022.109306
  • 加载中
计量
  • 文章访问数:  53
  • HTML全文浏览量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-08
  • 修回日期:  2024-01-19
  • 录用日期:  2024-01-31
  • 网络出版日期:  2024-03-12

目录

    /

    返回文章
    返回