留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管/环氧树脂复合材料拉伸实验与有限元模拟

曾利建 李仁府 陈宇轩

曾利建, 李仁府, 陈宇轩. 碳纳米管/环氧树脂复合材料拉伸实验与有限元模拟[J]. 复合材料学报, 2024, 41(6): 2938-2951. doi: 10.13801/j.cnki.fhclxb.20231024.001
引用本文: 曾利建, 李仁府, 陈宇轩. 碳纳米管/环氧树脂复合材料拉伸实验与有限元模拟[J]. 复合材料学报, 2024, 41(6): 2938-2951. doi: 10.13801/j.cnki.fhclxb.20231024.001
ZENG Lijian, LI Renfu, CHEN Yuxuan. Experimental and simulational study on tensile mechanical property of carbon nanotubes/epoxy resin composite[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 2938-2951. doi: 10.13801/j.cnki.fhclxb.20231024.001
Citation: ZENG Lijian, LI Renfu, CHEN Yuxuan. Experimental and simulational study on tensile mechanical property of carbon nanotubes/epoxy resin composite[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 2938-2951. doi: 10.13801/j.cnki.fhclxb.20231024.001

碳纳米管/环氧树脂复合材料拉伸实验与有限元模拟

doi: 10.13801/j.cnki.fhclxb.20231024.001
详细信息
    通讯作者:

    陈宇轩,博士,工程师,研究方向为热能工程 E-mail:cyx0126@hust.edu.cn

  • 中图分类号: TB332

Experimental and simulational study on tensile mechanical property of carbon nanotubes/epoxy resin composite

  • 摘要: 由于具有优异的力学、电学和热学性能,碳纳米管(Carbon nanotubes,CNTs)被广泛用于高性能复合材料制备研究。然而,CNTs具有高长径比、高比表面能和强范德华力,在制备过程中易团聚,在高填料浓度下导致复合材料力学性能的降低。为了准确表征碳纳米管增强环氧树脂纳米复合材料(CNTs enhanced epoxy nanocomposite,CNTs/EP)的拉伸力学性能,通过实验和有限元模拟分析,表征了不同类型CNTs增强的CNTs/EP的拉伸力学性能。在考虑团聚对环氧树脂材料参数影响的情况,提出了折减团聚区域树脂材料参数的方法,改进了团聚分布数值分析方法。结果表明,在0.5wt%的低含量下,均匀分布数值分析方法可以准确预测CNTs/EP的拉伸强度和弹性模量;团聚分析方法准确预测了CNTs/EP在1.5wt%高浓度下的拉伸力学性能,弹性模量和拉伸强度的预测误差不超过5%。

     

  • 图  1  碳纳米管增强环氧树脂纳米复合材料(CNTs/EP)纳米复合材料模型:(a)拉伸试样;(b) CNTs分布图;(c)模型图;(d)基体、碳纳米管与界面

    Figure  1.  Carbon nanotubes enhanced epoxy nanocomposite (CNTs/EP) nanocomposite model: (a) Tensile specimen; (b) Microscopic distribution of CNTs; (c) Finite element model; (d) Matrix, carbon nanotube and interphase

    图  2  典型牵引分离内聚力模型[16]

    Figure  2.  Typical cohesive traction-separation response[16]

    图  3  EP轴拉伸性能:(a)应力-应变曲线;(b)断裂图;(c)延性材料;(d)塑性参数

    Figure  3.  Uniaxial tensile property of pure EP: (a) Stress-strain curve; (b) Fracture image; (c) Ductile material; (c) Plasticity parameter

    $ \bar \varepsilon _0^{{\text{pl}}} $—Equivalent plastic strain at the onset of damage; $ \bar \varepsilon _0^{{\text{pl}}} $—Equivalent plastic strain at failure; $ {\sigma _0} $—Elastic limit for tension; $ {\sigma _{{\text{y}}0}} $—Yield stress; $ E $—Elastic modulus; $ D $—Damage variable; $ \bar \sigma $—Stress without damage

    图  4  均匀分布CNTs纳米复合材料建模流程图

    Figure  4.  Modeling flowchart for nanocomposite with uniformly distributed CNTs nanocomposites

    图  5  团聚分布CNTs纳米复合材料示意图

    Figure  5.  Diagram of micro CNTs nanocomposite with agglomerate

    ${r_0}$—Radius of agglomeration; l—Distance from the center of the agglomerate to the material point

    图  6  团聚CNTs纳米复合材料建模流程图

    Figure  6.  Modeling flowchart for CNTs nanocomposite with agglomeration

    图  7  网格独立性分析:(a)模型尺寸的影响;(b)网格尺寸的影响

    Figure  7.  Mesh independence analysis: (a) Effect of model size; (b) Effect of mesh size

    图  8  图均布纳米复合材料网格独立性分析

    Figure  8.  Mesh independence analysis of uniformly distributed nanocomposite

    图  9  图均布纳米复合材料模型示意图

    Figure  9.  Model diagram of nanocomposite with uniformly distributed CNTs

    图  10  均匀分布CNTs/EP纳米复合材料数值模拟应力-应变曲线

    Figure  10.  Numerical simulation of stress-strain curves for uniformly distributed CNTs/EP nanocomposite

    图  11  CNTs/EP纳米复合材料拉伸力学性能:(a)弹性模量;(b)拉伸强度

    Figure  11.  Tensile mechanical properties of CNTs/EP nanocomposites: (a) Elastic modulus; (b) Tensile strength

    图  12  均布纳米复合材料应力云图((a)~(d)分别是纯环氧树脂、C-CNTs/EP、g-CNTs/EP和p-CNTs/EP;单位:GPa)

    Figure  12.  Stress contour for uniform micro nanocomposite ((a)-(d) are pure epoxy, C-CNTs/EP, g-CNTs/EP and p-CNTs/EP, respectively.Unit: GPa)

    图  13  团聚CNTs/EP纳米复合材料MT理论预测结果:(a) 0.5wt%;(b) 1.0wt%;(c) 1.5wt%

    Figure  13.  Prediction result of CNTs/EP nanocomposite with agglomerate via MT method: (a) 0.5wt%; (b) 1.0wt%; (c) 1.5wt%

    图  14  团聚环氧树脂试样件光学图像:(a)和(b)是深埋团聚试样;(c)和(d)是表面团聚试样

    Figure  14.  Optical images of epoxy samples with agglomerate: (a) and (b) are samples with deep-buried agglomerate; (c) and (d) are samples with surface agglomerate

    图  15  团聚EP拉伸实验结果:(a)弹性模量;(b)拉伸强度

    Figure  15.  Tensile test result of EP with agglomerate: (a) Elastic modulus; (b) Tensile strength

    图  16  团聚区域单元的材料赋予示意图

    Figure  16.  Schematic diagram of mesh material assignment of the agglomeration region

    图  17  网格独立性分析

    Figure  17.  Mesh independence analysis

    图  18  团聚环氧树脂力学性能:(a)拉伸强度;(b)弹性模量

    Figure  18.  Mechanical properties of epoxy with agglomerate: (a) Tensile strength; (b) Elastic modulus

    图  19  团聚CNTs/EP纳米复合材料模型图

    Figure  19.  Diagram of CNTs/EP nanocomposite with agglomerate

    图  20  团聚CNTs/EP纳米复合材料拉伸力学性能

    Figure  20.  Tensile mechanical properties of CNTs/EP nanocomposite with agglomerate

    图  21  团聚纳米复合材料应力云图((a)~(d)分别是团聚环氧树脂、p-CNTs/EP、g-CNTs/EP和C-CNTs/EP;单位:GPa)

    Figure  21.  Stress contour for nanocomposite with agglomerate: ((a)~(d) are pure epoxy, p-CNTs/EP, g-CNTs/EP and C-CNTs/EP, respectively.Unit: GPa)

    表  1  EP和CNT材料参数[1, 23]

    Table  1.   Parameters of EP and CNT [1, 23]

    MaterialModulus
    /GPa
    Poisson's ratioStrength/GPa
    EP3.1120.30.0524
    CNT10000.220
    下载: 导出CSV

    表  2  纳米材料界面参数

    Table  2.   Interface parameters of nanomaterials

    Nanomaterial Stiffness/
    (GPa·μm−1)
    Interfacial strength/GPa Fracture energy/
    (10−4 GPa·μm)
    C-CNTs 3000 0.3 7.5
    g-CNTs 1000 0.1 2.5
    p-CNTs 360 0.036 9.0
    Notes: C-CNTs—Carboxylated carbon nanotubes; g-CNTs—Gelatin functionalized CNTs; p-CNTs—Pristine CNT
    下载: 导出CSV
  • [1] LIU S, CHEVALI V S, XU Z, et al. A review of extending performance of epoxy resins using carbon nanomaterials[J]. Composites Part B: Engineering, 2018, 136: 197-214. doi: 10.1016/j.compositesb.2017.08.020
    [2] WATTERS A, CUADRA J, KONTSOS A, et al. Processing-structure–property relationships of SWNT–epoxy composites prepared using ionic liquids[J]. Composites Part A: Applied Science and Manufacturing, 2015, 73: 269-276. doi: 10.1016/j.compositesa.2015.03.019
    [3] MAGHSOUDLOU M A, BARBAZ ISFAHANI R, SABER-SAMANDARI S, et al. Effect of interphase, curvature and agglomeration of SWCNTs on mechanical properties of polymer-based nanocomposites: Experimental and numerical investigations[J]. Composites Part B: Engineering, 2019, 175: 107119. doi: 10.1016/j.compositesb.2019.107119
    [4] YAZDANPARAST R, RAFIEE R. Investigating the influence of pull-out speed on the interfacial properties and the pull-out behavior of CNT/polymer nanocomposites[J]. Composite Structures, 2023, 316: 117049. doi: 10.1016/j.compstruct.2023.117049
    [5] 廖向娜, 贺雍律, 张鉴炜, 等. CNTs-纤维增强树脂基复合材料纳米-介观尺度数值模拟研究进展[J]. 材料工程, 2020, 48(12): 1-11. doi: 10.11868/j.issn.1001-4381.2020.000154

    LIAO Xiangna, HE Yonglv, ZHANG Jianwei, et al. Research pro-gress in nano-meso scale modelling of carbon nanotube reinforced FRP composites[J]. Journal of Materials Engineering, 2020, 48(12): 1-11(in Chinese). doi: 10.11868/j.issn.1001-4381.2020.000154
    [6] 庄茁. 基于abaqus的有限元分析和应用[M], 北京: 清华大学出版社, 2009.

    ZHUANG Zhuo. Finite element analysis and application based on ABAQUS[M]. Beijing: Tsinghua University Press, 2009(in Chinese).
    [7] ROMANOV V S, LOMOV S V, VERPOEST I, et al. Modelling evidence of stress concentration mitigation at the micro-scale in polymer composites by the addition of carbon nanotubes[J]. Carbon, 2015, 82: 184-194. doi: 10.1016/j.carbon.2014.10.061
    [8] LIU Q, LOMOV S V, GORBATIKH L. The interplay between multiple toughening mechanisms in nanocomposites with spatially distributed and oriented carbon nanotubes as revealed by dual-scale simulations[J]. Carbon, 2019, 142: 141-149. doi: 10.1016/j.carbon.2018.10.005
    [9] ZENG L, TAO W, ZHAO J, et al. Mechanical performance of a CFRP composite reinforced via gelatin-CNTs: A study on fiber interfacial enhancement and matrix enhancement[J]. Nanotechnology Reviews, 2022, 11(1): 625-636. doi: 10.1515/ntrev-2022-0040
    [10] American Society for Testing and Materials. Standard Test Method for Tensile Properties of Plastics: ASTM-D638—14[S], Philadelphia: ASTM international, 2014.
    [11] YOUSEFI E, SHEIDAEI A, MAHDAVI M, et al. Effect of nanofiller geometry on the energy absorption capability of coiled carbon nanotube composite material[J]. Composites Science and Technology, 2017, 153: 222-231. doi: 10.1016/j.compscitech.2017.10.025
    [12] RAFIEE R, SAHRAEI M. Characterizing delamination toughness of laminated composites containing carbon nanotubes: Experimental study and stochastic multi-scale modeling[J]. Composites Science and Technology, 2021, 201: 108487. doi: 10.1016/j.compscitech.2020.108487
    [13] RAFIEE R, GHORBANHOSSEINI A. Investigating interaction between CNT and polymer using cohesive zone model[J]. Polymer Composites, 2018, 39(11): 3903-3911. doi: 10.1002/pc.24428
    [14] ARAIN M F, WANG M, CHEN J, et al. Experimental and numerical study on tensile behavior of surface modified PVA fiber reinforced strain-hardening cementitious composites (PVA-SHCC)[J]. Construction and Building Materials, 2019, 217: 403-415. doi: 10.1016/j.conbuildmat.2019.05.083
    [15] SATO M, KOYANAGI J, LU X, et al. Temperature dependence of interfacial strength of carbon-fiber-reinforced temperature-resistant polymer composites[J]. Composite Structures, 2018, 202: 283-289. doi: 10.1016/j.compstruct.2018.01.079
    [16] LI D, YANG Q S, LIU X, et al. Experimental and cohesive finite element investigation of interfacial behavior of CNT fiber-reinforced composites[J]. Composites Part A: Applied Science and Manufacturing, 2017, 101: 318-325. doi: 10.1016/j.compositesa.2017.06.033
    [17] LIU Q, GORBATIKH L, LOMOV S V. A combined use of embedded and cohesive elements to model damage development in fibrous composites[J]. Composite Structures, 2019, 223: 110921. doi: 10.1016/j.compstruct.2019.110921
    [18] YANG L, YAN Y, LIU Y, et al. Microscopic failure mechanisms of fiber-reinforced polymer composites under transverse tension and compression[J]. Composites Science and Technology, 2012, 72(15): 1818-1825. doi: 10.1016/j.compscitech.2012.08.001
    [19] WAGNER H D, LOURIE O, FELDMAN Y, et al. Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix[J]. Applied Physics Letters, 1998, 72(2): 188-190. doi: 10.1063/1.120680
    [20] PAPANIKOS P, NIKOLOPOULOS D D, TSERPES K I. Equivalent beams for carbon nanotubes[J]. Computational Materials Science, 2008, 43(2): 345-352. doi: 10.1016/j.commatsci.2007.12.010
    [21] PENG J, WU J, HWANG K C, et al. Can a single-wall carbon nanotube be modeled as a thin shell?[J]. Journal of the Mechanics and Physics of Solids, 2008, 56(6): 2213-2224. doi: 10.1016/j.jmps.2008.01.004
    [22] ZACCARDI F, SANTONICOLA M G, LAURENZI S. Role of interface bonding on the elastic properties of epoxy-based nanocomposites with carbon nanotubes using multiscale analysis[J]. Composite Structures, 2021, 255: 113050. doi: 10.1016/j.compstruct.2020.113050
    [23] ARORA G, PATHAK H. Modeling of transversely isotropic properties of CNT-polymer composites using meso-scale FEM approach[J]. Composites Part B:Engineering, 2019, 166: 588-597. doi: 10.1016/j.compositesb.2019.02.061
    [24] RAFIEE R, ZEHTABZADEH H. Predicting the strength of carbon nanotube reinforced polymers using stochastic bottom-up modeling[J]. Applied Physics A, 2020, 126(8): 595. doi: 10.1007/s00339-020-03784-z
    [25] JIAN W, LAU D. Understanding the effect of functionalization in CNT-epoxy nanocomposite from molecular level[J]. Composites Science and Technology, 2020, 191: 108076. doi: 10.1016/j.compscitech.2020.108076
    [26] GANESAN Y, PENG C, LU Y, et al. Interface Toughness of Carbon Nanotube Reinforced Epoxy Composites[J]. ACS Applied Materials & Interfaces, 2011, 3(2): 129-134.
    [27] BARBER A H, COHEN S R, WAGNER H D. Measurement of carbon nanotube–polymer interfacial strength[J]. Applied Physics Letters, 2003, 82(23): 4140-4142. doi: 10.1063/1.1579568
    [28] LIU Q, LOMOV S V, GORBATIKH L. When does nanotube grafting on fibers benefit the strength and toughness of composites?[J]. Composites Science and Technology, 2020, 188: 107989. doi: 10.1016/j.compscitech.2020.107989
    [29] COOPER C A, COHEN S R, ET AL, WAGNER H D. Detachment of nanotubes from a polymer matrix[J]. Applied Physics Letters, 2002, 81(20): 3873-3875. doi: 10.1063/1.1521585
    [30] ZAMAN I, KUAN H-C, DAI J, et al. From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites[J]. Nanoscale, 2012, 4(15): 4578-4586. doi: 10.1039/c2nr30837a
    [31] WANG Q, SHI W, ZHU B, et al. An effective and green H2O2/H2O/O3 oxidation method for carbon nanotube to reinforce epoxy resin[J]. Journal of Materials Science & Technology, 2020, 40: 24-30.
    [32] KHARITONOV A P, KHARITONOV A P, TKACHEV A G, et al. Handbook of Composites from Renewable Materials [M]. Beverly: Scrivener Publishing LLC, 2017: 381-408.
    [33] MORI T, TANAKA K. Average stress in matrix and average elastic energy of materials with misfitting inclusions[J]. Acta Metallurgica, 1973, 21(5): 571-574. doi: 10.1016/0001-6160(73)90064-3
    [34] KAMARIAN S, SALIM M, DIMITRI R, et al. Free vibration analysis of conical shells reinforced with agglomerated Carbon Nanotubes[J]. International Journal of Mechanical Sciences, 2016, 108-109: 157-165. doi: 10.1016/j.ijmecsci.2016.02.006
    [35] MEHRABADI S J, SOBHANI ARAGH B. Stress analysis of functionally graded open cylindrical shell reinforced by agglomerated carbon nanotubes[J]. Thin-Walled Structures, 2014, 80: 130-141. doi: 10.1016/j.tws.2014.02.016
    [36] 潘静, 复合材料细观力学模型及相关材料性能研究[D]. 燕山大学, 2019.

    PAN Jing. A study on Micromechanics model of composite materials and related properties of materials[D]. Yanshan University, 2019(in Chinese).
    [37] LIU Q, LU Z, HU Z, et al. Finite element analysis on tensile behaviour of 3D random fibrous materials: Model description and meso-level approach[J]. Materials Science and Engineering: A, 2013, 587: 36-45. doi: 10.1016/j.msea.2013.07.087
    [38] YUAN Z, LU Z. Numerical analysis of elastic–plastic properties of polymer composite reinforced by wavy and random CNTs[J]. Computational Materials Science, 2014, 95: 610-619. doi: 10.1016/j.commatsci.2014.08.031
    [39] LUO Y, ZHAO Y, CAI J, et al. Effect of amino-functionalization on the interfacial adhesion of multi-walled carbon nanotubes/epoxy nanocomposites[J]. Materials & Design, 2012, 33: 405-412.
    [40] HUANG X, LI R, ZENG L, et al. A multifunctional carbon nanotube reinforced nanocomposite modified via soy protein isolate: A study on dispersion, electrical and mechanical properties[J]. Carbon, 2020, 161: 350-358. doi: 10.1016/j.carbon.2020.01.069
    [41] RAI A, SUBRAMANIAN N, CHATTOPADHYAY A. Investigation of damage mechanisms in CNT nanocomposites using multiscale analysis[J]. International Journal of Solids and Structures, 2017, 120: 115-124. doi: 10.1016/j.ijsolstr.2017.04.034
    [42] ESBATI A H, IRANI S. Effect of functionalized process and CNTs aggregation on fracture mechanism and mechanical properties of polymer nanocomposite[J]. Mechanics of Materials, 2018, 118: 106-119. doi: 10.1016/j.mechmat.2018.01.001
  • 加载中
图(21) / 表(2)
计量
  • 文章访问数:  249
  • HTML全文浏览量:  130
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-14
  • 修回日期:  2023-09-25
  • 录用日期:  2023-10-12
  • 网络出版日期:  2023-10-24
  • 刊出日期:  2024-06-15

目录

    /

    返回文章
    返回