留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

赤泥/聚二甲基硅氧烷复合材料的制备及性能

陆奔 李安敏 黄卓昉

陆奔, 李安敏, 黄卓昉. 赤泥/聚二甲基硅氧烷复合材料的制备及性能[J]. 复合材料学报, 2024, 41(7): 3561-3571.
引用本文: 陆奔, 李安敏, 黄卓昉. 赤泥/聚二甲基硅氧烷复合材料的制备及性能[J]. 复合材料学报, 2024, 41(7): 3561-3571.
LU Ben, Li Anmin, HUANG Zhuofang. Synthesis and properties of red mud/polydimethylsiloxane composites[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3561-3571.
Citation: LU Ben, Li Anmin, HUANG Zhuofang. Synthesis and properties of red mud/polydimethylsiloxane composites[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3561-3571.

赤泥/聚二甲基硅氧烷复合材料的制备及性能

基金项目: 2021年中央引导地方科技发展资金专项(桂科ZY21195030);2022年广西科技基地和人才专项(桂科AD21238010);广西重点研发计划项目(桂科AB22080015)
详细信息
    通讯作者:

    李安敏,博士,副教授,研究生导师,研究方向为铝合金、高熵合金和复合材料 E-mail: lianmin@gxu.edu.cn

  • 中图分类号: TB332

Synthesis and properties of red mud/polydimethylsiloxane composites

Funds: Special funds for local scientific and technological development under the guidance of the central government in 2021 (GuiKeZY21195030); Guangxi Science and Technology Base and Talent Project in 2022 (GuiKeAD21238010); Key research and development plan project of Guangxi (Guike AB22080015)
  • 摘要: 采用机械搅拌、真空磁力搅拌消泡和加热固化的方法,在柔性的聚二甲基硅氧烷中填充赤泥制备了赤泥/聚二甲基硅氧烷复合材料,并对复合材料的结构与形貌、力学性能和热性能进行了表征和分析。结果表明,赤泥作为交联节点和自润滑颗粒提高了复合材料的弹性模量、抗拉强度、邵氏硬度、冲击强度和摩擦磨损性能,其中,冲击强度的提高较显著,从41.13 kJ·m−2增大至273.33 kJ·m−2,增加了565%。此外,赤泥作为不可燃物也提高了复合材料的阻燃性能,极限氧指数从25.7%增大至34.7%,增加了35%,进入难燃材料的范围(>27%)。这有望扩宽这种硅酮材料的应用领域,同时为赤泥的资源化利用和新型赤泥/聚合物复合材料的研究提供参考。

     

  • 图  1  赤泥/聚二甲基硅氧烷复合材料的制备过程

    Figure  1.  Synthesis process of red mud/polydimethylsiloxane composites

    图  2  不同赤泥体积含量的赤泥/聚二甲基硅氧烷复合材料的红外光谱图谱

    Figure  2.  FTIR patterns of red mud/polydimethylsiloxane composites with different red mud volume content

    图  3  赤泥/聚二甲基硅氧烷复合材料的光学照片: (a) 0 vol%; (b) 10 vol%; (c) 20 vol%; (d) 30 vol%; (e) 40 vol%

    Figure  3.  Optical photos of red mud/polydimethylsiloxane composites: (a) 0 vol%; (b) 10 vol%; (c) 20 vol%; (d) 30 vol%; (e) 40 vol%

    图  4  赤泥/聚二甲基硅氧烷复合材料的扫描电子显微镜图像: (a) (b) 0 vol%; (c) (d) 10 vol%; (e) (f) 20 vol%; (g) (h) 30 vol%; (i) (j) 40 vol%

    Figure  4.  SEM images of red mud/polydimethylsiloxane composites: (a) (b) 0 vol%; (c) (d) 10 vol%; (e) (f) 20 vol%; (g) (h) 30 vol%; (i) (j) 40 vol%

    图  5  赤泥/聚二甲基硅氧烷复合材料的实际密度与气孔: (a)实际密度; (b)气孔率

    Figure  5.  Actual density and void percentage of red mud/polydimethylsiloxane composites: (a) actual density; (b) void percentage

    图  6  赤泥/聚二甲基硅氧烷复合材料的吸水率

    Figure  6.  Water absorption of red mud/polydimethylsiloxane composites

    图  7  赤泥/聚二甲基硅氧烷复合材料的室温拉伸性能: (a)应力-应变曲线; (b)弹性模量; (c)抗拉强度

    Figure  7.  Tensile properties of red mud/polydimethylsiloxane composites at room temperature: (a) stress-strain curve; (b) elasticity modulus; (c) tensile strength

    图  8  赤泥/聚二甲基硅氧烷复合材料的邵氏硬度A

    Figure  8.  Hardness shore A of red mud/polydimethylsiloxane composites

    图  9  赤泥/聚二甲基硅氧烷复合材料的冲击强度

    Figure  9.  Impact strength of red mud/polydimethylsiloxane composites

    图  10  赤泥/聚二甲基硅氧烷复合材料的摩擦磨损性能: (a)摩擦系数-时间曲线; (b)磨损量; (c)摩擦系数

    Figure  10.  Friction and wear properties of red mud/polydimethylsiloxane composites: (a) friction-time curve; (b) wear rate; (c) friction coefficient

    图  11  赤泥/聚二甲基硅氧烷复合材料的热分析: (a)差示扫描量热法曲线; (b)热重曲线

    Figure  11.  Thermal analysis curves of red mud/polydimethylsiloxane composites: (a) DSC; (b) TG

    图  12  赤泥/聚二甲基硅氧烷复合材料的极限氧指数测试: (a)赤泥0 vol%燃烧前; (b)赤泥0 vol%燃烧后; (c)赤泥40 vol%燃烧前; (d)赤泥40 vol%燃烧后; (e)极限氧指数

    Figure  12.  Limiting oxygen index test of red mud/polydimethylsiloxane composites: (a) before burning of 0 vol% red mud; (b) after burning of 0 vol% red mud; (c) before burning of 40 vol% red mud; (d) after burning of 40 vol% red mud; (e) limiting oxygen index

    图  13  赤泥/聚二甲基硅氧烷(PDMS)的力学性能和阻燃性能与一些聚合物复合材料的对比: (a)抗拉强度对比; (b)冲击强度对比; (c)极限氧指数对比

    Figure  13.  Mechanical properties and flame retardancy of red mud/polydimethylsiloxane(PDMS) compared with some polymer composites: (a) tensile strength comparison; (b) impact strength comparison; (c) comparison of limiting oxygen index

  • [1] LIU X, HAN Y X, HE F Y, et al. Characteristic, hazard and iron recovery technology of red mud - A critical review[J]. Journal of Hazardous Materials, 2021, 420: 126542. doi: 10.1016/j.jhazmat.2021.126542
    [2] KHANNA R, KONYUKHOV Y, ZINOVEEV D, et al. Red mud as a secondary resource of low-grade iron: a global perspective[J]. Sustainability, 2022, 14(3): 1258. doi: 10.3390/su14031258
    [3] YUAN S, LIU X, GAO P, et al. A semi-industrial experiment of suspension magnetization roasting technology for separation of iron minerals from red mud[J]. Journal of Hazardous Materials, 2020, 394: 122579. doi: 10.1016/j.jhazmat.2020.122579
    [4] ZHOU G T, WANG Y L, QI T G, et al. Toward sustainable green alumina production: a critical review on process discharge reduction from gibbsitic bauxite and large-scale applications of red mud[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109433. doi: 10.1016/j.jece.2023.109433
    [5] 李艳军, 张浩, 韩跃新, 等. 赤泥资源化回收利用研究进展[J]. 金属矿山, 2021, (4): 1-19. doi: 10.19614/j.cnki.jsks.202104001

    LI Yanjun, ZHANG Hao, HAN Yuexin, et al. Research progresson resource recycling and utilization of red mud[J]. Metal Mine, 2021, (4): 1-19(in Chinese). doi: 10.19614/j.cnki.jsks.202104001
    [6] BORRA C R, BLANPAIN B, PONTIKES Y, et al. Recovery of rare earths and other valuable metals from bauxite residue (red mud): a review[J]. Journal of Sustainable Metallurgy, 2016, 2(4): 365-386. doi: 10.1007/s40831-016-0068-2
    [7] 景英仁, 景英勤, 杨奇. 赤泥的基本性质及其工程特性[J]. 轻金属, 2001, (4): 20-23. doi: 10.3969/j.issn.1002-1752.2001.04.006

    JING Yingren, JING Yingqin, YANG Qi. Basic properties of red mud and engineering characteristics of it[J]. Light Metal, 2001, (4): 20-23(in Chinese). doi: 10.3969/j.issn.1002-1752.2001.04.006
    [8] 宋剑峰, 李曼, 梁小良, 等. 改性赤泥协同膨胀型阻燃剂阻燃聚乙烯[J]. 化工进展, 2018, 37(11): 4412-4418. doi: 10.16085/j.issn.1000-6613.2018-0339

    SONG Jianfeng, LI Man, LIANG Xiaoliang, et al. Red mud modified synergistic intumescent flame retardation to retardant polyethylene[J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4412-4418(in Chinese). doi: 10.16085/j.issn.1000-6613.2018-0339
    [9] 雷阳, 吴良喜, 刘玉飞, 等. 赤泥改性聚合物材料研究进展[J]. 塑料, 2023, 52(2): 77-81.

    LEI Yang, WU Liangxi, LIU Yufei, et al. Research progress of red mud modified polymer materials[J]. Plastics, 2023, 52(2): 77-81(in Chinese).
    [10] ARIATI R, SALES F, SOUZA A, et al. Polydimethylsiloxane composites characterization and its applications: a review[J]. Polymers, 2021, 13(23): 4258. doi: 10.3390/polym13234258
    [11] 余先纯, 孙德林. 胶黏剂与黏合技术基础(第二版) [M]. 北京: 化学工业出版社, 2022: 12-17.

    YU Xianchun, SUN Delin. Fundamentals of adhesives andbonding technology [M]. Beijing: Chemical industry press, 2022: 12-17(in Chinese).
    [12] 杨世诚, 孙琦, 谌伦建, 等. 赤泥改性及其对丁苯橡胶复合材料微观结构和力学性能的影响[J]. 化工进展, 2019, 38(7): 3297-3303. doi: 10.16085/j.issn.1000-6613.2018-1953

    YANG Shicheng, SUN Qi, SHEN Lunjian, et al. Effect of modified red mud on microstructure and mechanical properties of butadiene-styrene rubber composites[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3297-3303(in Chinese). doi: 10.16085/j.issn.1000-6613.2018-1953
    [13] VIGNESHWARAN S, UTHAYAKUMAR M, ARUMUGAPRABU V. Development and sustainability of industrial waste-based red mud hybrid composites[J]. Journal of Cleaner Production, 2019, 230: 862-868. doi: 10.1016/j.jclepro.2019.05.131
    [14] 赵国璋. 橡胶基纳米复合材料制备及性能研究 [D]. 上海: 上海大学, 2011.

    ZHAO Guozhang. Preparation and properties of rubber nanocomposites [D]. Shanghai: Shanghai University, 2011(in Chinese).
    [15] 王梦蛟, 迈克尔·莫里斯. 粒状填料对橡胶的补强 [M]. 北京: 化学工业出版社, 2021: 254-310.

    Wang Mengjiao, MORRIS Michael. Rubber reinforcement with particulate fillers [M]. Beijing: Chemical industry press, 2021: 254-310(in Chinese).
    [16] JENISH I, GANDHI V C S, RAJ R E, et al. A new study on tribological performance of cissus quadrangularis stem fiber/epoxy with red mud filler composite[J]. Journal of Natural Fibers, 2022, 19(9): 3502-3516. doi: 10.1080/15440478.2020.1848709
    [17] SURESH S, SUDHAKARA D. Investigation of mechanical and tribological properties of red mud-reinforced particulate polymer composite[J]. Journal of Bio- and Tribo-Corrosion, 2019, 5(4): 87-94. doi: 10.1007/s40735-019-0279-8
    [18] 宋永才, 商瑶, 冯春祥, 等. 聚二甲基硅烷的热分解研究[J]. 高分子学报, 1995, (6): 753-757.

    SONG Yongcai, SHANG Yao, FENG Chunxiang, et al. A study on the pyrolysis of polydimethylsilane[J]. Acta Polymerica Sinica, 1995, (6): 753-757(in Chinese).
    [19] 钱翌, 武洋. 赤泥基水滑石复配MPP对EVA阻燃性能的影响[J]. 合成树脂及塑料, 2018, 35(1): 15-19. doi: 10.3969/j.issn.1002-1396.2018.01.004

    QIAN Yi, WU Yang. Impact of hydrotalcite based on red mud compounding MPP on flame retarding property of EVA[J]. China Synthetic Resin and Plastics, 2018, 35(1): 15-19(in Chinese). doi: 10.3969/j.issn.1002-1396.2018.01.004
    [20] 刘彤. 不同偶联剂改性RM对PVCW/RM复合材料性能的影响[J]. 塑料科技, 2018, 46(1): 59-64. doi: 10.15925/j.cnki.issn1005-3360.2018.01.009

    LIU Tong. Effect of rm modified by different coupling agents on properties of pvcw/rm composites[J]. Plastic Technology, 2018, 46(1): 59-64(in Chinese). doi: 10.15925/j.cnki.issn1005-3360.2018.01.009
    [21] DING C, ZHANG Y, DI X, et al. High-density polyethylene composite filled with red mud: effect of coupling agent on mechanical and thermal properties[J]. Environ Technol, 2022, 43(21): 3283-3294. doi: 10.1080/09593330.2021.1921047
    [22] 石文建, 刘江, 杨红艳, 等. 赤泥改性PP复合材料制备及结晶性能与力学性能研究[J]. 塑料工业, 2013, 41(5): 43-47. doi: 10.3969/j.issn.1005-5770.2013.05.011

    SHI Wenjian, LIU Jiang, YANG Hongyan, et al. Research on the crystalline and mechanical properties of red mud filled polypropylene composites[J]. China Plastics Industry, 2013, 41(5): 43-47(in Chinese). doi: 10.3969/j.issn.1005-5770.2013.05.011
    [23] LIU J, LI X, ZHOU C. Mechanical and thermal properties of modified red mud-reinforced phenolic foams[J]. Polymer International, 2018, 67(5): 528-534. doi: 10.1002/pi.5540
    [24] 李曼, 宋剑峰, 林幸业, 等. 改性赤泥协同卤锑系阻燃剂阻燃LDPE研究[J]. 现代塑料加工应用, 2019, 31(3): 9-11. doi: 10.19690/j.issn1004-3055.20190012

    LI Man, SONG Jianfeng, LING Xingye, et al. Modified red mud combined with halo flame retardant to retard ldpe[J]. Processing and Applications, 2019, 31(3): 9-11(in Chinese). doi: 10.19690/j.issn1004-3055.20190012
    [25] 马俊易. 阻燃橡胶材料的制备及性能研究[D]. 山东: 青岛科技大学, 2019.

    MA Junyi. Preparation and properties offlame retardant rubber materials [D]. Shandong: Qingdao University of Science and Technology, 2019(in Chinese).
    [26] 魏宝强, 卢浩, 刘诚. 环氧树脂高效阻燃方法的探索[J]. 井冈山大学学报(自然科学版), 2020, 41(6): 61-66.

    WEI Baoqiang, LUHao, LIU Cheng. Explore the efficiency method for falme retardant of epoxy resin[J]. Journal of Jinggangshan University (Natural Science), 2020, 41(6): 61-66(in Chinese).
    [27] 赵丽萍, 蔡青, 郭正虹. 苯基膦酸铈与十溴二苯醚阻燃玻璃纤维增强聚对苯二甲酸乙二醇酯复合材料[J]. 复合材料学报, 2019, 36(10): 2259-2265. doi: 10.13801/j.cnki.fhclxb.20190522.001

    ZHAO Liping, CAI Qing, GUO Zhenghong. Cerium phenylphosphonate and decabromodiphenyl oxide for flame retardancy of glass fiber reinforced poly(ethylene terephthalate) composites[J]. Acta Materiae Compositae Sinica, 2019, 36(10): 2259-2265(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190522.001
    [28] 邓军, 庞青涛. 六苯氧基环三磷腈泡沫硅胶阻燃特性探究[J]. 西安科技大学学报, 2020, 40(2): 187-194. doi: 10.13800/j.cnki.xakjdxxb.2020.0201

    DENG Jun, PANG Qingtao. Flame retardant characteristics of hexaphenoxycyclo-triphosphazene silicone foam[J]. Journal of Xi’An University of Science and Technology, 2020, 40(2): 187-194(in Chinese). doi: 10.13800/j.cnki.xakjdxxb.2020.0201
  • 加载中
图(13)
计量
  • 文章访问数:  211
  • HTML全文浏览量:  185
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-05
  • 修回日期:  2023-11-19
  • 录用日期:  2023-11-22
  • 网络出版日期:  2023-12-04
  • 刊出日期:  2024-07-15

目录

    /

    返回文章
    返回