留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GFRP-轻木夹芯梁弯曲蠕变试验及预测

李晓龙 方海 吴鹏

李晓龙, 方海, 吴鹏. GFRP-轻木夹芯梁弯曲蠕变试验及预测[J]. 复合材料学报, 2024, 41(7): 3816-3824.
引用本文: 李晓龙, 方海, 吴鹏. GFRP-轻木夹芯梁弯曲蠕变试验及预测[J]. 复合材料学报, 2024, 41(7): 3816-3824.
LI Xiaolong, FANG Hai, WU Peng. Flexural creep test and prediction of GFRP-balsa sandwich beams[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3816-3824.
Citation: LI Xiaolong, FANG Hai, WU Peng. Flexural creep test and prediction of GFRP-balsa sandwich beams[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3816-3824.

GFRP-轻木夹芯梁弯曲蠕变试验及预测

基金项目: 国家自然科学青年基金(52108215)
详细信息
    通讯作者:

    李晓龙,工学博士,讲师,研究方向为复合材料结构 E-mail: lixl@jsou.edu.cn

  • 中图分类号: TB332

Flexural creep test and prediction of GFRP-balsa sandwich beams

Funds: National Natural Science Foundation of China (52108215)
  • 摘要: 以玻璃纤维增强复合材料(GFRP)为面层,轻木(balsa)为芯材的GFRP-balsa夹芯结构在基础设施领域的应用范围不断扩大,但GFRP-balsa夹芯结构具有粘弹性,易于发生蠕变变形。为此,在温度为(25±1)°C,相对湿度为55%±5%的环境下,利用自主设计的弯曲蠕变加载装置对GFRP-balsa夹芯梁在20%、25%和30%荷载等级下的三点弯曲蠕变性能进行了3000~8760 h的测试,并利用多种模型对GFRP-balsa夹芯梁的蠕变响应进行了模拟和预测。结果表明:在试验荷载等级下,GFRP-balsa夹芯梁表现出线性粘弹性;弯曲蠕变对GFRP-balsa夹芯梁的跨中挠度具有重要影响,所有试件在3000 h的蠕变系数均不小于0.35;Findley模型适用于单一荷载等级下GFRP-balsa夹芯梁时变总挠度的拟合,在3000 h的拟合值与试验值之间的最大相对误差仅为0.7%;Bailey-Norton模型和通用幂次律模型分别适用于荷载等级不超过30%的GFRP-balsa夹芯梁蠕变挠度和时变总挠度的预测,在一年时,Bailey-Norton模型和通用幂次律模型预测值与试验值之间的最大相对误差分别为8.3%和5.9%。

     

  • 图  1  GFRP-balsa夹芯梁示意图

    Figure  1.  Schematic diagram of the GFRP-balsa sandwich beam

    图  2  弯曲蠕变加载装置

    Figure  2.  The flexural creep loading devices

    图  3  GFRP-balsa夹芯梁在不同荷载等级下的蠕变挠度平均值曲线

    Figure  3.  Mean creep deflection curves of the GFRP-balsa sandwich beams at the different load levels

    图  4  GFRP-balsa夹芯梁在不同荷载等级下的蠕变挠度平均值/恒定外力-时间(Dca/F-t)曲线

    Figure  4.  Mean creep deflection/Force-time (Dca/F-t) curves of the GFRP-balsa sandwich beams at the different load levels

    图  5  GFRP-balsa夹芯梁蠕变挠度平均值的对数标尺图

    Figure  5.  Log scale plot of the mean creep deflections for the GFRP-balsa sandwich beams

    图  6  GFRP-balsa夹芯梁蠕变挠度平均值的Bailey-Norton模型拟合结果

    Figure  6.  Fitting results of the Bailey-Norton model of the mean creep deflections for the GFRP-balsa sandwich beams

    图  7  GFRP-balsa夹芯梁总挠度平均值的Findley模型拟合结果

    Figure  7.  Fitting results of the Findley model of the mean total deflections for the GFRP-balsa sandwich beams

    图  8  GFRP-balsa夹芯梁总挠度平均值的通用幂次律模型预测结果

    Figure  8.  Prediction results of the general power law model of the mean total deflections for the GFRP-balsa sandwich beams

    图  9  GFRP-balsa夹芯梁蠕变挠度试验结果和Bailey-Norton模型拟合外推结果对比

    Figure  9.  Comparison of the creep deflection test results and the Bailey-Norton model extrapolated results for the GFRP-balsa sandwich beams

    图  10  GFRP-balsa夹芯梁总挠度试验结果和通用幂次律模型预测结果对比

    Figure  10.  Comparison of the total deflection test results and the general power law model prediction results for the GFRP-balsa sandwich beams

    表  1  蠕变测试试件尺寸及加载情况汇总

    Table  1.   Summary of the dimensions and the loading conditions of the creep test specimens

    Specimen Length
    /mm
    Width
    /mm
    Depth
    /mm
    F/N
    20%-1 380.3 69.82 28.80 1196
    20%-2 379.8 69.88 28.76
    20%-3 380.5 70.02 28.74
    25%-1 380.0 69.90 28.82 1495
    25%-2 380.2 69.96 28.78
    25%-3 379.4 69.96 28.70
    30%-1 380.0 69.78 28.74 1794
    30%-2 380.2 69.98 28.72
    30%-3 380.1 70.00 28.78
    Notes: "20%", "25%" and "30%" refer to the load level; "−1", "−2" and "−3" refer to the serial number in a repeated test; F—Required force to be applied at the loading point.
    下载: 导出CSV

    表  2  GFRP-balsa夹芯梁三点弯曲蠕变测试结果汇总

    Table  2.   Summary of the three-point flexural creep test results of the GFRP-balsa sandwich beams

    Specimen d/mm da/mm D/mm Da/mm Dc/mm Dca/mm $\phi $
    20%-1 1.11 1.03 ± 0.075 1.52 1.43 ± 0.085 0.41 0.40 ± 0.012 0.37
    20%-2 0.96 1.35 0.39 0.41
    20%-3 1.03 1.42 0.39 0.38
    25%-1 1.30 1.32 ± 0.082 1.80 1.81 ± 0.091 0.50 0.49 ± 0.012 0.38
    25%-2 1.25 1.73 0.48 0.38
    25%-3 1.41 1.91 0.50 0.35
    30%-1 1.55 1.60 ± 0.050 2.15 2.19 ± 0.040 0.60 0.59 ± 0.021 0.39
    30%-2 1.65 2.23 0.57 0.35
    30%-3 1.60 2.20 0.61 0.38
    Notes: d—Initial static deflection; da—Mean initial static deflection; D—Total deflection at 3000 h; Da—Mean total deflection at 3000 h; Dc—Creep deflection at 3000 h; Dca—Mean creep deflection at 3000 h; $\phi $—Creep coefficient at 3000 h.
    下载: 导出CSV

    表  3  不同荷载等级下GFRP-balsa夹芯梁测试跨中挠度与容许挠度的对比

    Table  3.   Comparison of the test mid-span deflections and the allowable deflections of the GFRP-balsa sandwich beams at the different load levels

    Load level Deflection type Comparison
    [l/150] [l/200] [l/250]
    20% da < < <
    Da < < >
    25% da < < >
    Da < > >
    30% da < > >
    Da > > >
    Notes: da—The mean initial static deflection; Da—The mean total deflection at 3000 h; l—The span length.
    下载: 导出CSV

    表  4  Findley模型中各参数拟合结果汇总

    Table  4.   Summary of the fitting results of various parameters in the Findley model

    Load leveldaNR2
    20%0.97980.14810.14100.9953
    25%1.27520.17670.14100.9978
    30%1.54540.22990.13200.9971
    Notes: d—Initial static deflection; a—Amplitude of creep; N—Time exponent; R2—Determination coefficients.
    下载: 导出CSV

    表  5  GFRP-balsa夹芯梁一年时的蠕变测试值与模型预测值对比

    Table  5.   Comparison of the creep test values and the model prediction values at one year for the GFRP-balsa sandwich beams

    Load levelDce
    /mm
    DcB
    /mm
    δ1
    /%
    De
    /mm
    DG
    /mm
    δ2
    /%
    20%0.440.476.41.471.480.7
    25%0.550.608.31.851.913.1
    30%0.670.738.22.222.365.9
    Notes: Dce—The creep deflection test value at one year; DcB—The Bailey-Norton model extrapolated value at one year; δ1—The relative error between Dce and DcB; De—The total deflection test value at one year; DG—The general power law model prediction value at one year; δ2—The relative error between De and DG.
    下载: 导出CSV
  • [1] CHENG Y, REN K, FU J, et al. Simulation study on the anti-penetration performance and energy absorption characteristics of honeycomb aluminum sandwich structure[J]. Composite Structures, 2023, 310: 116776. doi: 10.1016/j.compstruct.2023.116776
    [2] HUANG S, LIU Y, WEN K, et al. Optimization design of a novel microwave absorbing honeycomb sandwich structure filled with magnetic shear-stiffening gel[J]. Composites Science and Technology, 2023, 232: 109883. doi: 10.1016/j.compscitech.2022.109883
    [3] CHEN C, FANG H, ZHU L, et al. Low-velocity impact properties of foam-filled composite lattice sandwich beams: Experimental study and numerical simulation[J]. Composite Structures, 2023, 306: 116573. doi: 10.1016/j.compstruct.2022.116573
    [4] JOSEPH C, MUTHUKUMAR C, NG L F, et al. The effect of nanoclay on the performance of basalt-epoxy facesheet and foam core sandwich panels[J]. Journal of Sandwich Structures & Materials, 2023, 25(7): 730-746.
    [5] ZHANG L, LIU W, WANG L, et al. Mechanical behavior and damage monitoring of pultruded wood-cored GFRP sandwich components[J]. Composite Structures, 2019, 215: 502-520. doi: 10.1016/j.compstruct.2019.02.084
    [6] ÖNAL T, TEMIZ Ş. Experimental and numerical investigation of flexural behavior of balsa core sandwich composite structures[J]. Materials Testing, 2023, 65(7): 1056-1068. doi: 10.1515/mt-2022-0375
    [7] FANG H, BAI Y, LIU W, et al. Connections and structural applications of fibre reinforced polymer composites for civil infrastructure in aggressive environments[J]. Composites Part B:Engineering, 2019, 164: 129-143. doi: 10.1016/j.compositesb.2018.11.047
    [8] 刘伟庆, 方海, 方园. 纤维增强复合材料及其结构研究进展[J]. 建筑结构学报, 2019, 40(4): 1-16. doi: 10.14006/j.jzjgxb.2019.04.001

    LIU Weiqing, FANG Hai, FANG Yuan. Research progress of fiber-reinforced composites and structures[J]. Journal of Building Structures, 2019, 40(4): 1-16(in Chinese). doi: 10.14006/j.jzjgxb.2019.04.001
    [9] CHEN J, ZHUANG Y, FANG H, et al. Energy absorption of foam-filled lattice composite cylinders under lateral compressive loading[J]. Steel and Composite Structures, 2019, 31(2): 133-148.
    [10] GARRIDO M, MADEIRA J F A, PROENÇA M, et al. Multi-objective optimization of pultruded composite sandwich panels for building floor rehabilitation[J]. Construction and Building Materials, 2019, 198: 465-478. doi: 10.1016/j.conbuildmat.2018.11.259
    [11] 梁军, 杜善义. 粘弹性复合材料力学性能的细观研究[J]. 复合材料学报, 2001, 18(1): 97-100. doi: 10.3321/j.issn:1000-3851.2001.01.023

    LIANG Jun, DU Shanyi. Study of mechanical properties of viscoelastic matrix composite by micromechanics[J]. Acta Materiae Compositae Sinica, 2001, 18(1): 97-100(in Chinese). doi: 10.3321/j.issn:1000-3851.2001.01.023
    [12] 张尧, 朱四荣, 陆士平, 等. 考虑界面效应的GFRP复合材料蠕变模型[J]. 复合材料学报, 2021, 38(11): 3682-3692. doi: 10.13801/j.cnki.fhclxb.20210119.001

    ZHANG Yao, ZHU Sirong, LU Shiping, et al. Creep model of GFRP composites considering interface effect[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3682-3692(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210119.001
    [13] HUANG J S, GIBSON L J. Creep of sandwich beams with polymer foam cores[J]. Journal of Materials in Civil Engineering, 1990, 2(3): 171-182. doi: 10.1061/(ASCE)0899-1561(1990)2:3(171)
    [14] SHENOI R A, ALLEN H G, CLARK S D. Cyclic creep and creep-fatigue interaction in sandwich beams[J]. Strain Analysis for Engineering Design, 1997, 32(1): 1-18. doi: 10.1243/0309324971513175
    [15] CHEN Z, YAN N, DENG J, et al. Flexural creep behavior of sandwich panels containing Kraft paper honeycomb core and wood composite skins[J]. Materials Science and Engineering:A, 2011, 528(16-17): 5621-5626. doi: 10.1016/j.msea.2011.03.092
    [16] DU Y, YAN N, KORTSCHOT M T. An experimental study of creep behavior of lightweight natural fiber-reinforced polymer composite/honeycomb core sandwich panels[J]. Composite Structures, 2013, 106: 160-166. doi: 10.1016/j.compstruct.2013.06.007
    [17] GARRIDO M, CORREIA J R, BRANCO F A, et al. Creep behaviour of sandwich panels with rigid polyurethane foam core and glass-fibre reinforced polymer faces: Experimental tests and analytical modelling[J]. Journal of Composite Materials, 2014, 48(18): 2237-2249. doi: 10.1177/0021998313496593
    [18] GARRIDO M, CORREIA J R, KELLER T, et al. Creep of sandwich panels with longitudinal reinforcement ribs for civil engineering applications: Experiments and composite creep modeling[J]. Journal of Composites for Construction, 2017, 21(1): 1-11.
    [19] GARRIDO M, CORREIA J R, KELLER T. Effect of service temperature on the flexural creep of vacuum infused GFRP laminates used in sandwich floor panels[J]. Composites Part B:Engineering, 2016, 90: 160-171. doi: 10.1016/j.compositesb.2015.12.027
    [20] GARRIDO M, CORREIA J R, KELLER T. Effect of service temperature on the shear creep response of rigid polyurethane foam used in composite sandwich floor panels[J]. Construction and Building Materials, 2016, 118: 235-244. doi: 10.1016/j.conbuildmat.2016.05.074
    [21] BOTTONI M, MAZZOTTI C, SAVOIA M. Creep tests on GFRP pultruded specimens subjected to traction or shear[J]. Composite Structures, 2014, 108: 514-523. doi: 10.1016/j.compstruct.2013.09.057
    [22] GONILHA J A, CORREIA J R, BRANCO F A. Creep response of GFRP-concrete hybrid structures: Application to a footbridge prototype[J]. Composites Part B:Engineering, 2013, 53: 193-206. doi: 10.1016/j.compositesb.2013.04.054
    [23] GARRIDO M, CORREIA J R. Elastic and viscoelastic behaviour of sandwich panels with glass-fibre reinforced polymer faces and polyethylene terephthalate foam core[J]. Journal of Sandwich Structures and Materials, 2018, 20(4): 399-424. doi: 10.1177/1099636216657388
    [24] KELLER T, ROTHE J, CASTRO J D, et al. GFRP-balsa sandwich bridge deck: concept, design, and experimental validation[J]. Journal of Composites for Construction, 2014, 18(2): 785-793.
    [25] American Society for Testing and Materials. Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039/3039M-17 [S]. West Conshohocken, PA, USA: ASTM International, 2017.
    [26] American Society for Testing and Materials. Standard test method for compressive properties of polymer matrix composite materials with unsupported gage section by shear loading: ASTM D3410/D3410M-16 [S]. West Conshohocken, PA, USA: ASTM International, 2016.
    [27] American Society for Testing and Materials. Standard test method for core shear properties of sandwich constructions by beam flexure: ASTM C393/C393M-20 [S]. West Conshohocken, PA, USA: ASTM International, 2016.
    [28] American Society for Testing and Materials. Standard test method for flexure creep of sandwich constructions: ASTM C480/C480M-16 [S]. West Conshohocken, PA, USA: ASTM International, 2016.
    [29] American Society for Testing and Materials. Standard test methods for direct moisture content measurement of wood and wood-based materials: ASTM D4442-20 [S]. West Conshohocken, PA, USA: ASTM International, 2020.
    [30] SCOTT D W, ZUREICK A H. Compression creep of a pultruded E-glass/vinylester composite[J]. Composites Science and Technology, 1998, 58(8): 1361-1369. doi: 10.1016/S0266-3538(98)00009-8
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  171
  • HTML全文浏览量:  128
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-27
  • 修回日期:  2023-10-22
  • 录用日期:  2023-11-02
  • 网络出版日期:  2023-11-18
  • 刊出日期:  2024-07-15

目录

    /

    返回文章
    返回