留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可回收高性能双固化环氧树脂的制备及其电气性能

王浩欢 秦岭 王天兴 史玲娜 吴金锁 文森

王浩欢, 秦岭, 王天兴, 等. 可回收高性能双固化环氧树脂的制备及其电气性能[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 王浩欢, 秦岭, 王天兴, 等. 可回收高性能双固化环氧树脂的制备及其电气性能[J]. 复合材料学报, 2024, 42(0): 1-10.
WANG Haohuan, QIN Ling, WANG Tianxing, et al. Preparation and electrical properties of recyclable high performance dual-curing epoxy resin[J]. Acta Materiae Compositae Sinica.
Citation: WANG Haohuan, QIN Ling, WANG Tianxing, et al. Preparation and electrical properties of recyclable high performance dual-curing epoxy resin[J]. Acta Materiae Compositae Sinica.

可回收高性能双固化环氧树脂的制备及其电气性能

基金项目: 重庆市交通科技项目(2022-02);重庆市技术创新与应用发展专项重点项目(CSTB2022TIAD-KPX0116;CSTB2022TIAD-KPX0117);交通运输行业重点科技项目(2022-ZD3-023)。
详细信息
    通讯作者:

    王浩欢,博士,工程师,研究方向为交能融合方向, E-mail: 20134209@cqu.edu.cn

  • 中图分类号: TB332

Preparation and electrical properties of recyclable high performance dual-curing epoxy resin

Funds: Project supported by Transportation Technology Program of Chongqing Municipal (2022-02); Special Key Program of Technological Innovation and Application Development of Chongqing Municipal (CSTB2022TIAD-KPX0116;CSTB2022TIAD-KPX0117); Key Technology Program in Transportation Industry (2022-ZD3-023).
  • 摘要: 环氧树脂为交通电气化进程提供了优异的绝缘、支撑和保护功能,但传统环氧树脂难以回收,这不符合绿色交通的可持续发展目标。现有可回收环氧树脂综合性能较差,限制了其在交通电气化进程中的应用,亟需开发高性能可回收的环氧树脂。本文提出了光敏油基树脂和环氧树脂的光-热双固化方法,利用酯交换机制,在无催化剂的高温高压环境下实现了双固化环氧树脂的回收,同时回收树脂仍保持出色的理化和电气性能。结果表明:回收前双固化环氧树脂的综合性能良好;回收树脂的粒径越小、热压压强越大,回收后树脂的理化和电气性能越好,在220℃、10 MPa的环境下热压3 h后回收树脂的综合性能最佳,弯曲和拉伸强度恢复率分别为92.0%和93.7%,工频下介电常数和介质损耗与回收前相差不大,击穿强度恢复率达到98.4%。该树脂在推进交通电气化的过程中具有一定潜力和应用前景。

     

  • 图  1  双固化环氧树脂的制备与回收过程

    Figure  1.  Preparation and recovery process of dual-curing epoxy resin

    图  2  L回收颗粒(a)和S回收颗粒(b)的宏观、微观形貌和粒径分布

    Figure  2.  Macro, micro morphology and size distribution of the L (a) and S (b) particles

    图  3  双固化环氧树脂的回收机制

    Figure  3.  Recovery mechanism of dual-curing epoxy resin

    图  4  双固化环氧树脂的热压回收过程

    Figure  4.  Recovery process of dual-curing epoxy resin by hot pressing

    图  5  双固化环氧树脂固化过程(a)与回收过程(b)的FTIR红外光谱及树脂回收后的DSC测试(c)

    Figure  5.  FTIR spectra of dual-curing epoxy resin at different curing stages (a) and before and after recycling (b), DSC of the dual-curing epoxy resins after recycling (c).

    图  6  双固化环氧树脂回收前后弯曲强度(a)和拉伸强度(b)

    Figure  6.  Bending strength (a) and tensile strength (b) of the dual-curing epoxy resin before and after recycling

    图  7  双固化环氧回收树脂断面形貌

    Figure  7.  Sectional morphology of dual-curing epoxy recovery resin

    图  8  双固化环氧树脂回收前后的介电常数

    Figure  8.  Dielectric constant of dual-curing epoxy resin before and after recycling

    图  9  双固化环氧树脂回收前后的介电损耗

    Figure  9.  Dielectric loss of dual-curing epoxy resin before and after recycling

    图  10  双固化环氧树脂回收前后的击穿强度

    Figure  10.  Breakdown voltage of dual-curing epoxy resin before and after recycling

    表  1  拉伸强度文献比较

    Table  1.   The comparison of the tensile strength among the literature

    Bibliographic Citation catalyst Tensile strength/
    MPa
    [16] Yes 12.0
    [17] Yes 10.3
    [18] Yes 9.9
    [19] Yes 28.0
    [22] Yes 7.0
    [23] No 47
    [24] No 41
    [28] Yes 1.6
    [29] Yes 2.0
    This article No 51.0
    下载: 导出CSV

    表  2  介电损耗文献比较

    Table  2.   The comparison of the dielectric loss among the literature

    Bibliographic citationDielectric loss
    before recycling
    Dielectric loss
    after recycling
    [25]0.047/
    [30]0.1250.9
    [31]0.050.055
    [32]0.02/
    This article0.010.015
    下载: 导出CSV
  • [1] 刘美琦. 电气化交通辅助逆变电源用LCC逆变器及其控制研究[D]. 湖南大学, 2022.

    LIU M. Research on LCC inverter and its control for electrified transportation auxiliary inverter[D]. Hu Nan University, 2022(in Chinese).
    [2] 王洪苹, 胡燕祝, 庄育锋, 等. 电气化交通路网的脆弱性分析[J]. 清华大学学报(自然科学版), 2023, 63(10): 1584-1597.

    WANG H, HU Y, ZHUANG Y, et al. Analyzing the vulnerability of electrified transportation road networks[J]. Journal of Tsinghua University (Science & Technology), 2023, 63(10): 1584-1597(in Chinese).
    [3] 徐贺, 包贤哲, 王连杰, 等. 电气化交通中的微型燃机及其电能变换技术综述[J]. 电气工程学报, 2022, 17(2): 2-18.

    XU H, BAO X, WANG L, et al. Overview of micro-gas turbines in electrified transportation and their electric energy conversion technology[J]. Jounal of Electrical Engineering, 2022, 17(2): 2-18(in Chinese).
    [4] LI Q, DU B, KONG X. Effect of extremely cold weather and shrinkage stress on interfacial discharge between epoxy and silicone rubber in hv cable terminations[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2023, 30(5): 2386-2393. doi: 10.1109/TDEI.2023.3266308
    [5] HUANG J, YE Z, ZHANG G, et al. Study on a 110 kV combined prefabricated joint fault caused by premature failure of grounding grid[J]. Engineering Failure Analysis, 2022, 141: 106701. doi: 10.1016/j.engfailanal.2022.106701
    [6] WU Z, LIN B, FAN J, et al. Effect of dielectric relaxation of epoxy resin on dielectric loss of medium-frequency transformer[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2022, 29(5): 1651-1658. doi: 10.1109/TDEI.2022.3193652
    [7] FANG Z, YANG X, ZENG H, et al. Research on the performance of green and environmentally friendly epoxy resin impregnated paper 110 kV current transformer[J]. AIP Advances, 2023, 13(8): 085120. doi: 10.1063/5.0166166
    [8] QIAN Z, LIU Y, LIU C, et al. Design and skid resistance evaluation of skeleton-dense epoxy asphalt mixture for steel bridge deck pavement[J]. Construction and Building Materials, 2016, 114: 851-863. doi: 10.1016/j.conbuildmat.2016.03.210
    [9] ALAMRI M, LU Q. Investigation on the inclusion of reclaimed diluted epoxy asphalt pavement materials into hot mix asphalt[J]. Construction and Building Materials, 2022, 361: 129710. doi: 10.1016/j.conbuildmat.2022.129710
    [10] KONDRATENKO YU A, GOLUBEVA N K, KOCHINA T A, et al. Field tests of protective epoxy coatings in a humid tropical climate[J]. Glass Physics and Chemistry, 2023, 49(1): 69-74. doi: 10.1134/S1087659622600818
    [11] KONDRATENKO YU A, GOLUBEVA N K, IVANOVA A G, et al. Improvement of the physicomechanical and corrosion-protective properties of coatings based on a cycloaliphatic epoxy matrix[J]. Russian Journal of Applied Chemistry, 2021, 94(11): 1489-1498. doi: 10.1134/S1070427221110045
    [12] TÜREL T, TOMOVIĆ Ž. Chemically recyclable and upcyclable epoxy resins derived from vanillin[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(22): 8308-8316.
    [13] RASHID M A, ZHU S, ZHANG L, et al. High-performance and fully recyclable epoxy resins cured by imine-containing hardeners derived from vanillin and syringaldehyde[J]. European Polymer Journal, 2023, 187: 111878. doi: 10.1016/j.eurpolymj.2023.111878
    [14] JIANG Y, WANG S, DONG W, et al. High-strength, degradable and recyclable epoxy resin based on imine bonds for its carbon-fiber-reinforced composites[J]. Materials, 2023, 16(4): 1604. doi: 10.3390/ma16041604
    [15] LI H, LI S, LI Q, et al. Universal, mechanically robust and self-healing superhydrophobic coatings enabled by covalent adaptable networks of disulfide bonds[J]. Progress in Organic Coatings, 2023, 175: 107362. doi: 10.1016/j.porgcoat.2022.107362
    [16] YANG Z, WANG Q, WANG T. Dual-triggered and thermally reconfigurable shape memory graphene-vitrimer composites[J]. ACS Applied Materials & Interfaces, 2016, 8(33): 21691-21699.
    [17] ZHAO S, ABU-OMAR M M. Catechol-mediated glycidylation toward epoxy vitrimers/polymers with tunable properties[J]. Macromolecules, 2019, 52(10): 3646-3654. doi: 10.1021/acs.macromol.9b00334
    [18] LIU Y, TANG Z, CHEN Y, et al. Engineering of β-hydroxyl esters into elastomer–nanoparticle interface toward malleable, robust, and reprocessable vitrimer composites[J]. ACS Applied Materials & Interfaces, 2018, 10(03): 2992-3001.
    [19] NIU X, WANG F, LI X, et al. Using Zn2+ ionomer to catalyze transesterification reaction in epoxy vitrimer[J]. Industrial & Engineering Chemistry Research, 2019, 58(14): 5698-5706.
    [20] JIANG Y, RAN Z, WU Y, et al. Reversible fluorescent adhesives based on covalent adaptable networks with dynamic AIE crosslinking: in situ visualization of adhesion capability[J]. Chemical Communications, 2023: 10.1039. D3CC03677D.
    [21] SUN J, LIANG M, YIN L, et al. Interfacial compatibility of core–shell cellulose nanocrystals for improving dynamic covalent adaptable networks’ fracture resistance in nanohybrid vitrimer composites[J]. ACS Applied Materials & Interfaces, 2023, 15(33): 39786-39796.
    [22] SNYDER R L, FORTMAN D J, DE HOE G X, et al. Reprocessable acid-degradable polycarbonate vitrimers[J]. Macromolecules, 2018, 51(02): 389-397. doi: 10.1021/acs.macromol.7b02299
    [23] HAN J, LIU T, HAO C, et al. A catalyst-free epoxy vitrimer system based on multifunctional hyperbranched polymer[J]. Macromolecules, 2018, 51(17): 6789-6799. doi: 10.1021/acs.macromol.8b01424
    [24] JIANG L, TIAN Y, CHENG J, et al. A biomass-based Schiff base vitrimer with both excellent performance and multiple degradability[J]. Polymer Chemistry, 2021, 12(45): 6527-6537. doi: 10.1039/D1PY01003D
    [25] 孙文杰, 张磊, 李天宇, 等. 基于动态受阻脲键氢化环氧树脂的介电性能与可修复性能[J]. 高电压技术, 2022, 48(7): 2668-2676.

    SUN Wenjie, ZHANG Lei, LI Tianyu, et al. Dielectric and repairable properties of hydrogenated epoxy resin based on dynamic hindered urea bonds[J]. High Voltage Engineering, 2022, 48(7): 2668-2676(in Chinese).
    [26] MEMON H, LIU H, RASHID M A, et al. Vanillin-based epoxy vitrimer with high performance and closed-loop recyclability[J]. Macromolecules, 2020, 53(2): 621-630. doi: 10.1021/acs.macromol.9b02006
    [27] TIAN P-X, LI Y-D, WENG Y, et al. Reprocessable, chemically recyclable, and flame-retardant biobased epoxy vitrimers[J]. European Polymer Journal, 2023, 193: 112078. doi: 10.1016/j.eurpolymj.2023.112078
    [28] CHEN M, ZHOU L, WU Y, et al. Rapid stress relaxation and moderate temperature of malleability enabled by the synergy of disulfide metathesis and carboxylate transesterification in epoxy vitrimers[J]. ACS Macro Letters, 2019, 8(03): 255-260. doi: 10.1021/acsmacrolett.9b00015
    [29] LI W, XIAO L, WANG Y, et al. Thermal-induced self-healing bio-based vitrimers: Shape memory, recyclability, degradation, and intrinsic flame retardancy[J]. Polymer Degradation and Stability, 2022, 202: 110039. doi: 10.1016/j.polymdegradstab.2022.110039
    [30] 张樱凡, 黄正勇, 王浩欢, 等. 可回收和高性能3D打印树脂的制备方法[J]. 高电压技术, 2023, 49(3): 962-970.

    ZHANG Yingfan, HUANG Zhengyong, WANG Haohuan, et al. Preparation of recyclable and high-performance 3D printing resins[J]. High Voltage Engineering, 2023, 49(3): 962-970(in Chinese).
    [31] SUN W, LUO J, ZHANG L, et al. Insulating silicones based on dynamic hindered urea bonds with high dielectric healability and recyclability[J]. ACS Applied Polymer Materials, 2021, 3(11): 5622-5631. doi: 10.1021/acsapm.1c00948
    [32] SOMAN B, SCHWEIZER K, EVANS C, et al. Fragile glass formation and non-arrhenius upturns in ethylene vitrimers revealed by dielectric spectroscopy[J]. Macromolecules, 2023, 56(1): 166-177. doi: 10.1021/acs.macromol.2c01657
    [33] 中国国家标准化管理委员会. 塑料 弯曲性能的测定: GB/T 9341—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Plastics-Determination of flexural properties: GB/T 9341—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [34] 中国国家标准化管理委员会. 塑料 拉伸性能的测定第2部分: 模塑和挤塑塑料的试验条件: GB/T 1040.2-2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People’s Republic of China. Plastics-Determination of tensile properties-Part 2: Test conditions for moulding and extrusion plastics: GB/T 1040.2—2006[S]. Beijing: China Standards Press, 2006(in Chinese).
    [35] 中国国家标准化管理委员会. 绝缘材料 电气强度试验方法第1部分: 工频下试验: GB/T 1408.1-2016[S]. 北京: 中国标准出版社, 2016.

    Standardization Administration of the People’s Republic of China. Insulating materials-Test methods for electric strength-Part 1: Test at power frequencies: GB/T 1408.1-2016[S]. Beijing: China Standards Press, 2006(in Chinese).
    [36] CHEN Z. Recyclable thermosetting polymers for digital light processing 3D printing[J]. Materials and Design, 2021, 197: 109189. doi: 10.1016/j.matdes.2020.109189
    [37] ZHANG B, KOWSARI K, SERJOUEI A, et al. Reprocessable thermosets for sustainable three-dimensional printing[J]. Nature Communications, 2018, 9(1): 1831. doi: 10.1038/s41467-018-04292-8
    [38] MONTARNAL D, CAPELOT M, TOURNILHAC F, et al. Silica-like malleable materials from permanent organic networks[J]. Science, 2011, 334(6058): 965-968. doi: 10.1126/science.1212648
  • 加载中
计量
  • 文章访问数:  100
  • HTML全文浏览量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-12
  • 修回日期:  2023-12-18
  • 录用日期:  2023-12-25
  • 网络出版日期:  2024-01-13

目录

    /

    返回文章
    返回