留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

巯基接枝氧化石墨烯/聚酰胺复合膜制备及反渗透脱盐性能

王笑影 褚文娣 葛梦妮 武少禹 杨彦 郭风 张建峰

王笑影, 褚文娣, 葛梦妮, 等. 巯基接枝氧化石墨烯/聚酰胺复合膜制备及反渗透脱盐性能[J]. 复合材料学报, 2021, 38(8): 2479-2488. doi: 10.13801/j.cnki.fhclxb.20201030.008
引用本文: 王笑影, 褚文娣, 葛梦妮, 等. 巯基接枝氧化石墨烯/聚酰胺复合膜制备及反渗透脱盐性能[J]. 复合材料学报, 2021, 38(8): 2479-2488. doi: 10.13801/j.cnki.fhclxb.20201030.008
WANG Xiaoying, CHU Wendi, GE Mengni, et al. Fabrication of sulfhydryl grafted graphene oxide/polyamide composite membranes for reverse osmosis desalination[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2479-2488. doi: 10.13801/j.cnki.fhclxb.20201030.008
Citation: WANG Xiaoying, CHU Wendi, GE Mengni, et al. Fabrication of sulfhydryl grafted graphene oxide/polyamide composite membranes for reverse osmosis desalination[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2479-2488. doi: 10.13801/j.cnki.fhclxb.20201030.008

巯基接枝氧化石墨烯/聚酰胺复合膜制备及反渗透脱盐性能

doi: 10.13801/j.cnki.fhclxb.20201030.008
基金项目: 国家重点研发计划 (2018YFC1508704;2018YFC0408003)
详细信息
    通讯作者:

    张建峰,博士,教授,博士生导师,研究方向为水环境净化材料 E-mail:jfzhang_sic@163.com

  • 中图分类号: TB332;TQ051.893

Fabrication of sulfhydryl grafted graphene oxide/polyamide composite membranes for reverse osmosis desalination

  • 摘要: 反渗透膜技术作为脱盐的核心技术,在海水和苦咸水淡化、超纯水制备、污水回水等领域具有广泛应用前景,但其渗透性-选择性之间的 “trade-off” 效应仍是限制反渗透技术发展的一大挑战。本研究将表面功能化(接枝巯基官能团)的氧化石墨烯(GO)掺入间苯二胺水相溶液中,通过水相间苯二胺和有机相均苯三甲酰氯界面聚合的方法制备出巯基接枝氧化石墨烯(GO-SH)/聚酰胺(PA)反渗透复合膜。利用TEM、SEM、EDS、FTIR和NMR对接枝后粉体进行表征,利用2 g·L−1 NaCl水溶液测试膜的脱盐性能,优化了界面聚合水相pH和反应时间的设定。研究结果表明,GO-SH能够更均匀地分散在PA中,优化后的pH为11,反应时间为4 min,当改性后粉体含量为0.09wt%时,复合膜水通量可达48 L·m−2·h−1,脱盐率达到99.6%,相较于本实验接枝前纳米材料复合的PA膜分别提高了30% 和2.54%。表面功能化的GO有效地解决了无机纳米粒子和有机聚合物的相容性,提高膜脱盐性能,有望进一步降低反渗透项目的运行成本。

     

  • 图  1  巯基接枝氧化石墨烯(GO-SH)机制图

    Figure  1.  Mechanism diagram of sulfhydryl grafting graphene oxide (GO-SH)

    图  2  GO-SH/聚酰胺(PA)复合膜制备流程示意图

    Figure  2.  Schematic diagram of the preparation process of GO-SH/polyamide (PA) composite membrane

    TMC—Trimesoyl chloride; MPD—Metaphenylene diamine; PSF—Polysulfone

    图  3  三联高压平板膜小试设备图

    Figure  3.  Schematic diagram of the small test equipment for triple high-pressure flat membrane

    图  4  GO和GO-SH的TEM图像、SEM图像及EDS图谱

    Figure  4.  TEM images, SEM images and EDS spectra of GO and GO-SH

    图  5  GO和GO-SH的FTIR图谱

    Figure  5.  FTIR spectra of GO and GO-SH

    图  6  GO和GO-SH的核磁共振氢谱

    Figure  6.  1H NMR of GO and GO-SH

    图  7  PA、0.06wt%GO/PA和 0.06wt%GO-SH/PA复合膜的SEM图像

    Figure  7.  SEM images of PA, 0.06wt%GO/PA and 0.06wt%GO-SH/PA membranes

    图  8  接枝前后GO/PA膜的脱盐性能水通量 (a) 和脱盐率 (b)

    Figure  8.  Separation performance of GO/PA membrane before and after grafting water flux (a) and salt rejection (b)

    图  9  水相pH与反应时间对GO-SH/PA复合膜脱盐性能的影响

    Figure  9.  Influence of pH and reaction time on separation performance of GO-SH/PA

    图  10  本研究复合膜与商业反渗透膜脱盐率和水通量的比较

    Figure  10.  Comparison of salt rejection and water permeability between composite membranes in this study and commercial reverse osmosis membranes

    CNT—Carbon nanotube; RO—Reverse osmosis; Z-DG—Zeolite-different genres; SH—sulfhydryl group

    图  11  GO-SH/PA复合膜脱盐机制图

    Figure  11.  Separation mechanism diagram of GO-SH/PA composite membrane

    DH2O—Diffusivity of H2O; DNaCl—Diffusivity of NaCl; J—Diffusion flux; D—Diffusivity of penetrant; c—Volume concentration of component; $\dfrac{{\partial c}}{{\partial x}} $—Concentration gradient

  • [1] PENATE B, GARCIA-RODRIGUEZ L. Current trends and future prospects in the design of seawater reverse osmosis desalination technology[J]. Desalination,2012,284:1-8. doi: 10.1016/j.desal.2011.09.010
    [2] SAFARPOUR M, KHATAEE A, VATANPOUR V. Thin film nanocomposite reverse osmosis membrane modified by reduced graphene oxide/TiO2 with improved desalination performance[J]. Journal of Membrane Science,2015,489:43-54. doi: 10.1016/j.memsci.2015.04.010
    [3] GREENLEE L F, LAWLER D F, FREEMAN B D, et al. Reverse osmosis desalination: Water sources, technology, and today's challenges[J]. Water Research,2009,43(9):2317-2348. doi: 10.1016/j.watres.2009.03.010
    [4] MCGILVERY C M, ABELLAN P, KLOSOWSKI M M, et al. Nanoscale chemical heterogeneity in aromatic polyamide membranes for reverse osmosis applications[J]. ACS Applied Materials & Interfaces,2020,12(17):19890-19902.
    [5] ALBO J, HAGIWARA H, YANAGISHITA H, et al. Structural characterization of thin-film polyamide reverse osmosis membranes[J]. Industrial & Engineering Chemistry Research,2014,53(4):1442-1451.
    [6] 席丹, 曹从军, 齐萨仁, 等. 超薄皮层反渗透复合膜制备技术的研究进展[J]. 化工进展, 2020:1-10.

    XI D, CAO C J, QI S R, et al. Progress in preparation of ultra-thin composite reverse osmosis membrane[J]. Chemical Industry and Engineering Progress,2020:1-10(in Chinese).
    [7] ANTONY A, CHILCOTT T, COSTER H, et al. In situ structural and functional characterization of reverse osmosis membranes using electrical impedance spectroscopy[J]. Journal of Membrane Science,2013,425:89-97.
    [8] JIMENEZ-SOLOMON M F, SONG Q L, JELFS K E, et al. Polymer nanofilms with enhanced microporosity by interfacial polymerization[J]. Nature Materials,2016,15(7):760-767. doi: 10.1038/nmat4638
    [9] 王娇娜, 尹泽芳, 李从举. 静电纺丝复合反渗透膜的改性制备与脱盐性能[J]. 高等学校化学学报, 2016, 37(2):396-402. doi: 10.7503/cjcu20150519

    WANG Q N, YIN Z F, LI C J. Preparation and desalination performance of composite reverse osmosis membrane based on electrospinning technology[J]. Chemical Journal of Chinese Universities,2016,37(2):396-402(in Chinese). doi: 10.7503/cjcu20150519
    [10] LI Z H, WANG L, LI Y, et al. Carbon-based functional nanomaterials: Preparation, properties and applications[J]. Composites Science and Technology,2019,179:10-40. doi: 10.1016/j.compscitech.2019.04.028
    [11] KWAK S Y, KIM S, HKIM S S. Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling. 1. Preparation and characterization of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane[J]. Environmental Science & Technology,2001,35(11):2388-2394.
    [12] TAKEUCHI K, TAKIZAWA Y, KITAZAWA H, et al. Salt rejection behavior of carbon nanotube-polyamide nanocomposite reverse osmosis membranes in several salt solutions[J]. Desalination,2018,443:165-171. doi: 10.1016/j.desal.2018.04.021
    [13] LEE T H, LEE M Y, LEE H D, et al. Highly porous carbon nanotube/polysulfone nanocomposite supports for high-flux polyamide reverse osmosis membranes[J]. Journal of Membrane Science,2017,539:441-450. doi: 10.1016/j.memsci.2017.06.027
    [14] ABDIKHEIBARI S, LEI W W, DUMEE L F, et al. Novel thin film nanocomposite membranes decorated with few-layered boron nitride nanosheets for simultaneously enhanced water flux and organic fouling resistance[J]. Applied Surface Science,2019,488:565-577. doi: 10.1016/j.apsusc.2019.05.217
    [15] ISHII K, IKEDA A, TAKEUCHI T, et al. Silica-based RO membranes for separation of acidic solution[J]. Membranes,2019,9(8):94. doi: 10.3390/membranes9080094
    [16] DONG H, ZHAO L, ZHANG L, et al. High-flux reverse osmosis membranes incorporated with NaY zeolite nanoparticles for brackish water desalination[J]. Journal of Membrane Science,2015,476:373-383. doi: 10.1016/j.memsci.2014.11.054
    [17] LI Z Y, WANG L, LI Y, et al. Frontiers in carbon dots: Design, properties and applications[J]. Materials Chemistry Frontiers,2019,3(12):2571-2601. doi: 10.1039/C9QM00415G
    [18] ZHANG Y, CHUNG T S. Graphene oxide membranes for nanofiltration[J]. Current Opinion in Chemical Engineering,2017,16:9-15. doi: 10.1016/j.coche.2017.03.002
    [19] XIA S, YAO L J, ZHAO Y, et al. Preparation of graphene oxide modified polyamide thin film composite membranes with improved hydrophilicity for natural organic matter removal[J]. Chemical Engineering Journal,2015,280:720-727. doi: 10.1016/j.cej.2015.06.063
    [20] YIN J, ZHU G C, DENG B L. Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification[J]. Desalination,2016,379:93-101. doi: 10.1016/j.desal.2015.11.001
    [21] LAI G S, LAU W J, GOH P S, et al. Tailor-made thin film nanocomposite membrane incorporated with graphene oxide using novel interfacial polymerization technique for enhanced water separation[J]. Chemical Engineering Journal,2018,344:524-534. doi: 10.1016/j.cej.2018.03.116
    [22] YIN J, KIM E S, YANG J, et al. Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification[J]. Journal of Membrane Science,2012,423:238-246.
    [23] DONG L Q, FENG Y Y, WANG L, et al. Azobenzene-based solar thermal fuels: Design, properties, and applications[J]. Chemical Society Reviews,2018,47(19):7339-7368. doi: 10.1039/C8CS00470F
    [24] LI X Y, ZHOU H H, WU W Q, et al. Studies of heavy metal ion adsorption on chitosan/sulfydryl-functionalized graphene oxide composites[J]. Journal of Colloid and Interface Science,2015,448:389-397. doi: 10.1016/j.jcis.2015.02.039
    [25] MURUGAN A V, MURALIGANT H T, MANTHIRAM A. Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage[J]. Chemistry of Materials,2009,21(21):5004-5006. doi: 10.1021/cm902413c
    [26] ZHAO D L, GAO X, CHEN S H, et al. Interaction between U(VI) with sulfhydryl groups functionalized graphene oxides investigated by batch and spectroscopic techniques[J]. Journal of Colloid and Interface Science,2018,524:129-138. doi: 10.1016/j.jcis.2018.04.012
    [27] FENG X M, HU J Q, CHEN X H, et al. Synthesis and electron transfer property of sulfhydryl-containing multi-walled carbon nanotube/gold nanoparticle heterojunctions[J]. Journal of Physics D-Applied Physics,2009,42(4):042001. doi: 10.1088/0022-3727/42/4/042001
    [28] GAO W, MAJUMDER M, ALEMANY L B, et al. Engineered graphite oxide materials for application in water purification[J]. ACS Applied Materials & Interfaces,2011,3(6):1821-1826.
    [29] 谢欣, 张潇, 李蕊含, 等. 反渗透膜微结构的调控及海水脱硼性能的提升[J]. 高等学校化学学报, 2019, 40(9):2033-2040. doi: 10.7503/cjcu20190104

    XIE X, ZHANG X, LI R H, et al. Microstructure regulation of the reverse osmosis membrane to improve the boron removal performance[J]. Chemical Journal of Chinese Universities,2019,40(9):2033-2040(in Chinese). doi: 10.7503/cjcu20190104
    [30] KIM E S, DENG B L. Fabrication of polyamide thin-film nano-composite (PA-TFN) membrane with hydrophilized ordered mesoporous carbon (H-OMC) for water purifications[J]. Journal of Membrane Science,2011,375(1-2):46-54. doi: 10.1016/j.memsci.2011.01.041
    [31] 宋杰, 徐子丹, 周勇, 等. 表面改性纳米二氧化钛-芳香聚酰胺复合反渗透膜的制备与表征[J]. 水处理技术, 2013, 39(6):24-28. doi: 10.3969/j.issn.1000-3770.2013.06.007

    SONG J, XU Z D, ZHOU Y, et al. Preparation and characterization of surface-modified nano-TiO2/aromatic polyamide composite reverse osmosis membranes[J]. Technology of Water Treatment,2013,39(6):24-28(in Chinese). doi: 10.3969/j.issn.1000-3770.2013.06.007
    [32] LIU M H, YU S C, TAO J, et al. Preparation, structure characteristics and separation properties of thin-film composite polyamide-urethane seawater reverse osmosis membrane[J]. Journal of Membrane Science,2008,325(2):947-956. doi: 10.1016/j.memsci.2008.09.033
    [33] YU S C, LIU M H, LUE Z H, et al. Aromatic-cycloaliphatic polyamide thin-film composite membrane with improved chlorine resistance prepared from m-phenylenediamine-4-methyl and cyclohexane-1, 3, 5-tricarbonyl chloride[J]. Journal of Membrane Science,2009,344(1-2):155-164. doi: 10.1016/j.memsci.2009.07.046
    [34] YAN W T, SHI M Q, WANG Z, et al. Confined growth of skin layer for high performance reverse osmosis membrane[J]. Journal of Membrane Science,2019,585:208-217. doi: 10.1016/j.memsci.2019.05.033
    [35] XU J, YAN H, ZHANG Y, et al. The morphology of fully-aromatic polyamide separation layer and its relationship with separation performance of TFC membranes[J]. Journal of Membrane Science,2017,541:174-188. doi: 10.1016/j.memsci.2017.06.057
    [36] YIN C, ZHANG Y J, CHEN Z, et al. Correlation between the pore resistance and water flux of the cellulose acetate membrane[J]. Environmental Science-Water Research & Technology,2017,3(6):1037-1041.
    [37] WANG X, FANG D F, HSIAO B S, et al. Nanofiltration membranes based on thin-film nanofibrous composites[J]. Journal of Membrane Science,2014,469:188-197. doi: 10.1016/j.memsci.2014.06.049
    [38] FORNASIERO F, PARK H G, HOLT J K, et al. Ion exclusion by sub-2-nm carbon nanotube pores[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(45):17250-17255. doi: 10.1073/pnas.0710437105
    [39] HOLT J K, PARK H G, WANG Y M, et al. Fast mass transport through sub-2-nanometer carbon nanotubes[J]. Science,2006,312(5776):1034-1037. doi: 10.1126/science.1126298
    [40] LI L X, LEE R. Purification of produced water by ceramic membranes: material screening, process design and economics[J]. Separation Science and Technology,2009,44(15):3455-3484. doi: 10.1080/01496390903253395
    [41] WANG X Y, LI Q Q, ZHANG J F, et al. Novel thin-film reverse osmosis membrane with MXene Ti3C2Tx embedded in polyamide to enhance the water flux, anti-fouling and chlorine resistance for water desalination[J]. Jounal of Membrane Science,2020,603:118036. doi: 10.1016/j.memsci.2020.118036
    [42] DAVID C T, GROSSMAN J C. Water desalination across nanoporous graphene[J]. Nano Letters,2012,12(7):3602-3608. doi: 10.1021/nl3012853
    [43] GEISE G M, PAUL D R, FREEMAN B D. Fundamental water and salt transport properties of polymeric materials[J]. Progress in Polymer Science,2014,39(1):1-42. doi: 10.1016/j.progpolymsci.2013.07.001
    [44] ROH I J, GREENBERG A R, KHARE V P. Synthesis and characterization of interfacially polymerized polyamide thin films[J]. Desalination,2006,191(1-3):279-290. doi: 10.1016/j.desal.2006.03.004
  • 加载中
图(11)
计量
  • 文章访问数:  1412
  • HTML全文浏览量:  916
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-13
  • 录用日期:  2020-10-20
  • 网络出版日期:  2020-10-30
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回