留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti3C2Tx基复合电磁屏蔽材料的结构设计与性能研究进展

汪恒 冯舒玥 胡峻豪 刘梦竹 王永鹏

汪恒, 冯舒玥, 胡峻豪, 等. Ti3C2Tx基复合电磁屏蔽材料的结构设计与性能研究进展[J]. 复合材料学报, 2024, 41(7): 3408-3430.
引用本文: 汪恒, 冯舒玥, 胡峻豪, 等. Ti3C2Tx基复合电磁屏蔽材料的结构设计与性能研究进展[J]. 复合材料学报, 2024, 41(7): 3408-3430.
WANG Heng, FENG Shuyue, HU Junhao, et al. Progress in the structural design and properties of Ti3C2Tx-based electromagnetic shielding composites[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3408-3430.
Citation: WANG Heng, FENG Shuyue, HU Junhao, et al. Progress in the structural design and properties of Ti3C2Tx-based electromagnetic shielding composites[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3408-3430.

Ti3C2Tx基复合电磁屏蔽材料的结构设计与性能研究进展

基金项目: 吉林省科技厅项目(YDZJ202301ZYTS307; YDZJ202203CGZH024; 20220508026RC); 吉林省发展和改革委员会项目(2022C040)
详细信息
    通讯作者:

    王永鹏,博士研究生,副教授,硕士生导师,研究方向为高分子复合材料 E-mail: wyp4889@163.com

  • 中图分类号: TN974;O614.41;TB332

Progress in the structural design and properties of Ti3C2Tx-based electromagnetic shielding composites

Funds: Jilin Provincical Science and Technology Department (YDZJ202301ZYTS307; YDZJ202203CGZH024; 20220508026RC) ; Jilin Province Development and Reform Commission (2022C040)
  • 摘要: 随着5G网络的普及和电子设备的小型化,电磁辐射给周围环境和人体带来了一定的危害,为此研制综合性能优异的新型电磁干扰屏蔽材料具有十分重要的意义。Ti3C2Tx MXene是一种新型二维材料,具有独特的层状结构、可调节的活性表面、超高电导率等特点,展现出优异的电磁屏蔽性能。近年来,关于Ti3C2Tx的制备方法和填料选择的报道层出不穷,然而从结构设计层面总结Ti3C2Tx基复合材料的工作却很少。高效的结构设计不仅能够减少填料的用量而且能够提高屏蔽效能。本文以结构为主线,对近年来Ti3C2Tx基电磁屏蔽材料的发展趋势进行了总结,通过分析屏蔽效能和屏蔽机制,重点总结不同的结构如多孔结构、分层结构、核壳结构、其他特殊结构及其复合结构对Ti3C2Tx基电磁屏蔽性能的影响及作用,并提出了目前Ti3C2Tx及其复合材料在作为电磁屏蔽材料使用时急需解决的关键科学和技术问题。最后对MXenes的发展前景进行展望。

     

  • 图  1  不同结构MXenes/聚合物电磁干扰屏蔽复合材料概述

    Figure  1.  Overview of MXenes/ polymer EMI shielding composites with different structures

    图  2  入射电磁波与不同结构之间的相互作用,(a)多孔结构;(b)核壳结构;(c)分层结构;(d)复合结构

    Figure  2.  Interactions between incident electromagnetic waves and different structures, (a) Porous structures; (b) Core-shell structure; (c) Hierarchical structure; (d) Composite structure

    图  3  入射电磁波在电磁屏蔽材料中的屏蔽机制

    Figure  3.  Shielding mechanism of incident electromagnetic waves in electromagnetic shielding material

    图  4  疏水多孔Ti3C2Tx泡沫薄膜[47]和rG-M多孔薄膜[52]的制备流程、微观形貌和屏蔽性能

    Figure  4.  Preparation flow, microscopic morphology and shielding properties of hydrophobic porous Ti3C2Tx foam films[47] and rG-M porous films[52]

    图  5  微孔Ti3C2Tx/ANFs复合气凝胶[53]和多孔结构纳米纤维素Ti3C2Tx复合气凝胶[54]的结构示意图和屏蔽性能

    Figure  5.  Schematic structure diagram and shielding properties of microporous Ti3C2Tx/ANFs composite aerogels[53] and porous nanocellulose/Ti3C2Tx composite aerogels[54]

    图  6  多孔结构Ti3C2Tx/rGO复合薄膜的制备流程、屏蔽原理、屏蔽性能和疏水性[55]

    Figure  6.  Preparation process, shielding principle, shielding performance and hydrophobicity of porous structure Ti3C2Tx/rGO composite film[55]

    图  7  核壳结构MXrGO@PMMA复合材料的制备流程、导热性能和屏蔽性能[60]

    Figure  7.  Preparation process, thermal conductivity and shielding[60]

    图  8  核壳结构ANF@MXenes纤维的微观形貌、机械性能、屏蔽原理和屏蔽性能[64]

    Figure  8.  Microscopic morphology, mechanical properties, shielding principle and shielding performance of core-shell ANF@MXenes fiber[64]

    图  9  交替多层结构纳米纤维素/Ti3C2Tx复合薄膜的微观形貌、机械性能、屏蔽原理和屏蔽性能[70]

    Figure  9.  Microscopic morphology, mechanical properties, shielding principle, and shielding properties of CNF/Ti3C2Tx composite films with alternating multilayer structures[70]

    图  10  交替多层结构壳聚糖/Ti3C2Tx薄膜的屏蔽原理、屏蔽性能、导热性能和电热转化性能[72]

    Figure  10.  Shielding principle, shielding properties, thermal conductivity, and electrothermal conversion properties of CS/Ti3C2Tx thin films with alternating multilayer structures[72]

    图  11  复合结构FA-CNF/MXenes/FA-CNF复合膜的微观形貌和屏蔽性能[81]

    Figure  11.  Microscopic morphology and shielding performance of FA-CNF/MXenes/FA-CNF composite film with composite structure[81]

    图  12  复合结构Ti3C2Tx/SHCNF薄膜的机械性能和屏蔽性能[86]

    Figure  12.  Mechanical properties and shielding properties of Ti3C2Tx/SHCNF film with composite structure[86]

    图  13  其它结构的微观形貌,(a-b)隔离结构[88];(c-d)花状结构[91];(e-f)蛋盒结构[92]

    Figure  13.  Micromorphology of other structures, (a-b) isolated structure[88]; (c-d) flower structure[91]; (e-f) egg box structure[92]

  • [1] AZARKAMAN A, ABDOLLAHI E, SAFAEI M. The level of awareness of the citizens of Kohgiluyeh and Boyer Ahmad, Ardabil, Bushehr and Hamadan provinces about the laws and harms of electromagnetic waves and radio radiation[J]. Political Sociology of Iran, 2021, 3(4): 3475-3492.
    [2] 杨新兴, 李世莲, 尉鹏, 等. 环境中的电磁波污染及其危害[J]. 前沿科学, 2014, 8(01): 13-26.

    Yang Xinxing, Li Shilian, Wei Peng, et al. Electromagnetic wave pollution in the environment and its harm[J]. Journal of Cutting-edge Science, 2014, 8(01): 13-26 (in Chinese).
    [3] THANKAPPAN M, RIFà-POUS H, GARRIGUES C. Multi-channel man-in-the-middle attacks against protected wi-fi networks: A state of the art review[J]. Expert Systems with Applications, 2022: 118401.
    [4] ONGEL K, GUMRAL N, OZGUNER F. The potential effects of electromagnetic field: a review[J]. Cell Membranes and Free Radical Research, 2009, 1(3): 85-89.
    [5] MOON J-H. Health effects of electromagnetic fields on children[J]. Clinical and Experimental Pediatrics, 2020, 63(11): 422-428. doi: 10.3345/cep.2019.01494
    [6] MERCOLA J. EMF* D: 5G, Wi-Fi & cell phones: Hidden harms and how to protect yourself [M]. Hay House, Inc, 2020.
    [7] WONGKASEM N. Electromagnetic pollution alert: Microwave radiation and absorption in human organs and tissues[J]. Electromagnetic Biology and Medicine, 2021, 40(2): 236-253. doi: 10.1080/15368378.2021.1874976
    [8] SHEN J-E. Analysis of the harm of electromagnetic wave pollution and its protection strategies; proceedings of the 2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC), F, 2020 [C]. IEEE.
    [9] CHEN M, ZHANG L, DUAN S, et al. Highly conductive and flexible polymer composites with improved mechanical and electromagnetic interference shielding performances[J]. Nanoscale, 2014, 6(7): 3796-3803. doi: 10.1039/C3NR06092F
    [10] CHAUDHARY A, KUMARI S, KUMAR R, et al. Lightweight and easily foldable MCMB-MWCNTs composite paper with exceptional electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2016, 8(16): 10600-10608.
    [11] JAMADADE S, JADHAV S V, PURI V. Electromagnetic reflection, shielding and conductivity of polypyrrole thin film electropolymerized in P-Tulensulfonic acid[J]. Journal of Non-crystalline Solids, 2011, 357(3): 1177-1181. doi: 10.1016/j.jnoncrysol.2010.11.022
    [12] LIANG C, SONG P, MA A, et al. Highly oriented three-dimensional structures of Fe3O4 decorated CNTs/reduced graphene oxide foam/epoxy nanocomposites against electromagnetic pollution[J]. Composites Science and Technology, 2019, 181: 107683. doi: 10.1016/j.compscitech.2019.107683
    [13] THOMASSIN J-M, PAGNOULLE C, BEDNARZ L, et al. Foams of polycaprolactone/MWNT nanocomposites for efficient EMI reduction[J]. Journal of Materials Chemistry, 2008, 18(7): 792-796. doi: 10.1039/b709864b
    [14] HAN M, YIN X, DUAN W, et al. Hierarchical graphene/SiC nanowire networks in polymer-derived ceramics with enhanced electromagnetic wave absorbing capability[J]. Journal of the European Ceramic Society, 2016, 36(11): 2695-2703. doi: 10.1016/j.jeurceramsoc.2016.04.003
    [15] PAN H, YIN X, XUE J, et al. In-situ synthesis of hierarchically porous and polycrystalline carbon nanowires with excellent microwave absorption performance[J]. Carbon, 2016, 107: 36-45. doi: 10.1016/j.carbon.2016.05.045
    [16] WANG G, HAO L, ZHANG X, et al. Flexible and transparent silver nanowires/biopolymer film for high-efficient electromagnetic interference shielding[J]. Journal of Colloid and Interface Science, 2022, 607: 89-99. doi: 10.1016/j.jcis.2021.08.190
    [17] JIA L, DING X, SUN J, et al. A controllable gradient structure of hydrophobic composite fabric constructed by silver nanowires and polyvinylidene fluoride microspheres for electromagnetic interference shielding with low reflection[J]. Composites Part A:Applied Science and Manufacturing, 2022, 156: 106884. doi: 10.1016/j.compositesa.2022.106884
    [18] FU M, JIAO Q, ZHAO Y. Preparation of NiFe2 O4 nanorod–graphene composites via an ionic liquid assisted one-step hydrothermal approach and their microwave absorbing properties[J]. Journal of Materials Chemistry A, 2013, 1(18): 5577-5586. doi: 10.1039/c3ta10402h
    [19] WU G, CHENG Y, REN Y, et al. Synthesis and characterization of γ-Fe2O3@ C nanorod-carbon sphere composite and its application as microwave absorbing material[J]. Journal of Alloys and Compounds, 2015, 652: 346-350. doi: 10.1016/j.jallcom.2015.08.236
    [20] GUPTA S, CHANG C, LAI C-H, et al. Hybrid composite mats composed of amorphous carbon, zinc oxide nanorods and nickel zinc ferrite for tunable electromagnetic interference shielding[J]. Composites Part B:Engineering, 2019, 164: 447-457. doi: 10.1016/j.compositesb.2019.01.060
    [21] AL-ASBAHI B A, QAID S M H, EL-SHAMY A G. Flexible conductive nanocomposite PEDOT: PSS/Te nanorod films for superior electromagnetic interference (EMI) shielding: A new exploration[J]. Journal of Industrial and Engineering Chemistry, 2021, 100: 233-247. doi: 10.1016/j.jiec.2021.05.019
    [22] AL NAIM A F, IBRAHIM S S, EL-SHAMY A G. A new class of electromagnetic shields based on carbon dots adorning Te nanorods embedded into PEDOT: PSS for protection from electromagnetic (EM) pollutions[J]. Progress in Organic Coatings, 2021, 161: 106509. doi: 10.1016/j.porgcoat.2021.106509
    [23] ABDOLHOSSEINZADEH S, JIANG X, ZHANG H, et al. Perspectives on solution processing of two-dimensional MXenes[J]. Materials Today, 2021, 48: 214-240. doi: 10.1016/j.mattod.2021.02.010
    [24] SHI X, ZHANG R, RUAN K, et al. Improvement of thermal conductivities and simulation model for glass fabrics reinforced epoxy laminated composites via introducing hetero-structured BNN-30@ BNNS fillers[J]. Journal of Materials Science & Technology, 2021, 82: 239-249.
    [25] ZHU Y, BAI B, DING E, et al. Enhanced elec tromagnetic interference shielding performance of geopolymer nanocomposites by incorporating carbon nanotubes with controllable silica shell[J]. Ceramics International, 2022, 48(8): 11103-11110. doi: 10.1016/j.ceramint.2021.12.330
    [26] HE Q-M, TAO J-R, YANG Y, et al. Electric-magnetic-dielectric synergism and Salisbury screen effect in laminated polymer composites with multiwall carbon nanotube, nickel, and antimony trioxide for enhancing electromagnetic interference shielding[J]. Composites Part A:Applied Science and Manufacturing, 2022, 156: 106901. doi: 10.1016/j.compositesa.2022.106901
    [27] GAO J, DING Q, YAN P, et al. Highly improved microwave absorbing and mechanical properties in cold sintered ZnO by incorporating graphene oxide[J]. Journal of the European Ceramic Society, 2022, 42(3): 993-1000. doi: 10.1016/j.jeurceramsoc.2021.10.053
    [28] WANG J, WANG Q, WANG W, et al. Hollow Ni/C microsphere@ graphene foam with dual-spatial and porous structure on the microwave absorbing performance[J]. Journal of Alloys and Compounds, 2021, 873: 159811. doi: 10.1016/j.jallcom.2021.159811
    [29] XU F, ZHANG S, WANG G, et al. Lightweight Low-Frequency Sound-Absorbing Composites of Graphene Network Reinforced by Honeycomb Structure[J]. Advanced Materials Interfaces, 2021, 8(16): 2100183. doi: 10.1002/admi.202100183
    [30] HONG J-Y, SOHN E-H, PARK S, et al. Highly-efficient and recyclable oil absorbing performance of functionalized graphene aerogel[J]. Chemical Engineering Journal, 2015, 269: 229-235. doi: 10.1016/j.cej.2015.01.066
    [31] LIU J, ZHANG L, WU H. Electromagnetic wave-absorbing performance of carbons, carbides, oxides, ferrites and sulfides: review and perspective[J]. Journal of Physics D:Applied Physics, 2021, 54(20): 203001. doi: 10.1088/1361-6463/abe26d
    [32] PRASAD J, SINGH A K, GAHLOT A P S, et al. Electromagnetic interference shielding properties of hierarchical core-shell palladium-doped MoS2/CNT nanohybrid materials[J]. Ceramics International, 2021, 47(19): 27586-27597. doi: 10.1016/j.ceramint.2021.06.183
    [33] PRASAD J, SINGH A K, TOMAR M, et al. Hydrothermal synthesis of micro-flower like morphology aluminum-doped MoS2/rGO nanohybrids for high efficient electromagnetic wave shielding materials[J]. Ceramics International, 2021, 47(11): 15648-15660. doi: 10.1016/j.ceramint.2021.02.135
    [34] HORMOZI N, ESMAEILI A. Synthesis and correction of albumin magnetic nanoparticles with organic compounds for absorbing and releasing doxorubicin hydrochloride[J]. Colloids and Surfaces B:Biointerfaces, 2019, 182: 110368. doi: 10.1016/j.colsurfb.2019.110368
    [35] MAJID F, ALI M D, ATA S, et al. Fe3O4/graphene oxide/Fe4 [Fe (CN) 6] 3 nanocomposite for high performance electromagnetic interference shielding[J]. Ceramics International, 2021, 47(8): 11587-11595. doi: 10.1016/j.ceramint.2020.12.291
    [36] LIU H, WU S, YOU C, et al. Fe3O4 nanoparticles decorated flexible carbon foam for efficient electromagnetic interference shielding[J]. Ceramics International, 2022, 48(13): 19452-19459. doi: 10.1016/j.ceramint.2022.03.246
    [37] VERMA S, DWIVEDI U, CHATURVEDI K, et al. Progress of 2D MXenes based composites for efficient electromagnetic interference shielding applications: a review[J]. Synthetic Metals, 2022, 287: 117095. doi: 10.1016/j.synthmet.2022.117095
    [38] RAAGULAN K, KIM B M, CHAI K Y. Recent advancement of electromagnetic interference (EMI) shielding of two dimensional (2D) MXene and graphene aerogel composites[J]. Nanomaterials, 2020, 10(4): 702. doi: 10.3390/nano10040702
    [39] FEI Y, LIANG M, ZHOU T, et al. Unique carbon nanofiber@ Co/C aerogel derived bacterial cellulose embedded zeolitic imidazolate frameworks for high-performance electromagnetic interference shielding[J]. Carbon, 2020, 167: 575-584. doi: 10.1016/j.carbon.2020.06.013
    [40] MEI H, ZHAO X, GUI X, et al. SiC encapsulated Fe@ CNT ultra-high absorptive shielding material for high temperature resistant EMI shielding[J]. Ceramics International, 2019, 45(14): 17144-17151. doi: 10.1016/j.ceramint.2019.05.268
    [41] IQBAL A, SAMBYAL P, KOO C M. 2D MXenes for electromagnetic shielding: a review[J]. Advanced Functional Materials, 2020, 30(47): 2000883. doi: 10.1002/adfm.202000883
    [42] WXX W C Y, MAO S C. Progress in research on lightweight graphene-based EMI shielding materials[J]. Journal of Materials Engineering and Performance, 2016, 44: 109-118.
    [43] WEI H, ZHANG Z, HUSSAIN G, et al. Techniques to enhance magnetic permeability in microwave absorbing materials[J]. Applied Materials Today, 2020, 19: 100596. doi: 10.1016/j.apmt.2020.100596
    [44] HU S, LI S, XU W, et al. Rapid preparation, thermal stability and electromagnetic interference shielding properties of two-dimensional Ti3C2 MXene[J]. Ceramics International, 2019, 45(16): 19902-19909. doi: 10.1016/j.ceramint.2019.06.246
    [45] ZHOU A, LIU Y, LI S, et al. From structural ceramics to 2D materials with multi-applications: A review on the development from MAX phases to MXenes[J]. Journal of Advanced Ceramics, 2021: 1-49.
    [46] RONCHI R M, ARANTES J T, SANTOS S F. Synthesis, structure, properties and applications of MXenes: Current status and perspectives[J]. Ceramics International, 2019, 45(15): 18167-18188. doi: 10.1016/j.ceramint.2019.06.114
    [47] LIU J, ZHANG H B, SUN R, et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding[J]. Advanced Materials, 2017, 29(38): 1702367. doi: 10.1002/adma.201702367
    [48] CHEN Q, FAN B, ZHANG Q, et al. Design of 3D lightweight Ti3C2Tx MXene porous film with graded holes for efficient electromagnetic interference shielding performance[J]. Ceramics International, 2022, 48(10): 14578-14586. doi: 10.1016/j.ceramint.2022.01.351
    [49] WANG Y, QI Q, YIN G, et al. Flexible, ultralight, and mechanically robust waterborne polyurethane/Ti3C2Tx MXene/nickel ferrite hybrid aerogels for high-performance electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2021, 13(18): 21831-21843.
    [50] HOJJATI-NAJAFABADI A, MANSOORIANFAR M, LIANG T, et al. Magnetic-MXene-based nanocomposites for water and wastewater treatment: A review[J]. Journal of Water Process Engineering, 2022, 47: 102696. doi: 10.1016/j.jwpe.2022.102696
    [51] HE Z, HUANG D, YUE G, et al. Ca2+ induced 3D porous MXene gel for continuous removal of phosphate and uranium[J]. Applied Surface Science, 2021, 570: 150804. doi: 10.1016/j.apsusc.2021.150804
    [52] ZHANG Y, XU M-K, WANG Z, et al. Strong and conductive reduced graphene oxide-MXene porous films for efficient electromagnetic interference shielding[J]. Nano Research, 2022, 15(6): 4916-4924. doi: 10.1007/s12274-022-4311-9
    [53] LU Z, JIA F, ZHUO L, et al. Micro-porous MXene/Aramid nanofibers hybrid aerogel with reversible compression and efficient EMI shielding performance[J]. Composites Part B:Engineering, 2021, 217: 108853. doi: 10.1016/j.compositesb.2021.108853
    [54] ZHANG Y, YU J, LU J, et al. Facile construction of 2D MXene (Ti3C2Tx) based aerogels with effective fire-resistance and electromagnetic interference shielding performance[J]. Journal of Alloys and Compounds, 2021, 870: 159442. doi: 10.1016/j.jallcom.2021.159442
    [55] ZHANG Y, RUAN K, SHI X, et al. Ti3C2Tx/rGO porous composite films with superior electromagnetic interference shielding performances[J]. Carbon, 2021, 175: 271-280. doi: 10.1016/j.carbon.2020.12.084
    [56] YUE Y, LIU N, MA Y, et al. Highly self-healable 3D microsupercapacitor with MXene–graphene composite aerogel[J]. Acs Nano, 2018, 12(5): 4224-4232. doi: 10.1021/acsnano.7b07528
    [57] SAMBYAL P, IQBAL A, HONG J, et al. Ultralight and Mechanically Robust Ti₃C₂Tₓ Hybrid Aerogel Reinforced by Carbon Nanotubes for Electromagnetic Interference Shielding[J]. ACS Applied Materials & Interfaces, 2019, 11(41): 38046-38054.
    [58] MA Z, KANG S, MA J, et al. Ultraflexible and mechanically strong double-layered aramid nanofiber–Ti3C2Tx mxene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding[J]. Acs Nano, 2020, 14(7): 8368-8382. doi: 10.1021/acsnano.0c02401
    [59] WANG S, LI D, MENG W, et al. Scalable, superelastic, and superhydrophobic MXene/silver nanowire/melamine hybrid sponges for high-performance electromagnetic interference shielding[J]. Journal of Materials Chemistry C, 2022, 10(13): 5336-5344. doi: 10.1039/D2TC00516F
    [60] VU M C, MANI D, KIM J-B, et al. Hybrid shell of MXene and reduced graphene oxide assembled on PMMA bead core towards tunable thermoconductive and EMI shielding nanocomposites[J]. Composites Part A:Applied Science and Manufacturing, 2021, 149: 106574. doi: 10.1016/j.compositesa.2021.106574
    [61] LI C, NI X, LEI Y, et al. Plasmolysis-inspired yolk–shell hydrogel-core@ void@ MXene-shell microspheres with strong electromagnetic interference shielding performance[J]. Journal of Materials Chemistry A, 2021, 9(47): 26839-26851. doi: 10.1039/D1TA08788F
    [62] CHEN X, JIANG J, YANG G, et al. Bioinspired wood-like coaxial fibers based on MXene@ graphene oxide with superior mechanical and electrical properties[J]. Nanoscale, 2020, 12(41): 21325-21333. doi: 10.1039/D0NR04928J
    [63] LIU L-X, CHEN W, ZHANG H-B, et al. Tough and electrically conductive Ti3C2Tx MXene–based core–shell fibers for high–performance electromagnetic interference shielding and heating application[J]. Chemical Engineering Journal, 2022, 430: 133074. doi: 10.1016/j.cej.2021.133074
    [64] LIU L-X, CHEN W, ZHANG H-B, et al. Super-tough and environmentally stable aramid. Nanofiber@ MXene coaxial fibers with outstanding electromagnetic interference shielding efficiency[J]. Nano-micro letters, 2022, 14(1): 111. doi: 10.1007/s40820-022-00853-1
    [65] ZHANG Y, WANG L, ZHANG J, et al. Fabrication and investigation on the ultra-thin and flexible Ti3C2Tx/co-doped polyaniline electromagnetic interference shielding composite films[J]. Composites Science and Technology, 2019, 183: 107833. doi: 10.1016/j.compscitech.2019.107833
    [66] CUI C, XIANG C, GENG L, et al. Flexible and ultrathin electrospun regenerate cellulose nanofibers and d-Ti3C2Tx (MXene) composite film for electromagnetic interference shielding[J]. Journal of Alloys and Compounds, 2019, 788: 1246-1255. doi: 10.1016/j.jallcom.2019.02.294
    [67] XIN W, XI G-Q, CAO W-T, et al. Lightweight and flexible MXene/CNF/silver composite membranes with a brick-like structure and high-performance electromagnetic-interference shielding[J]. RSC Advances, 2019, 9(51): 29636-29644. doi: 10.1039/C9RA06399D
    [68] LIU R, MIAO M, LI Y, et al. Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2018, 10(51): 44787-44795.
    [69] ZHANG Y, CHENG W, TIAN W, et al. Nacre-inspired tunable electromagnetic interference shielding sandwich films with superior mechanical and fire-resistant protective performance[J]. ACS Applied Materials & Interfaces, 2020, 12(5): 6371-6382.
    [70] ZHOU B, ZHANG Z, LI Y, et al. Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers[J]. ACS Applied Materials & Interfaces, 2020, 12(4): 4895-4905.
    [71] JIN X, WANG J, DAI L, et al. Flame-retardant poly (vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances[J]. Chemical Engineering Journal, 2020, 380: 122475. doi: 10.1016/j.cej.2019.122475
    [72] TAN Z, ZHAO H, SUN F, et al. Fabrication of Chitosan/MXene multilayered film based on layer-by-layer assembly: Toward enhanced electromagnetic interference shielding and thermal management capacity[J]. Composites Part A:Applied Science and Manufacturing, 2022, 155: 106809. doi: 10.1016/j.compositesa.2022.106809
    [73] CAO W-T, CHEN F-F, ZHU Y-J, et al. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties[J]. ACS Nano, 2018, 12(5): 4583-4593. doi: 10.1021/acsnano.8b00997
    [74] LI L, ZHANG M, ZHANG X, et al. New Ti3C2 aerogel as promising negative electrode materials for asymmetric supercapacitors[J]. Journal of Power Sources, 2017, 364: 234-241. doi: 10.1016/j.jpowsour.2017.08.029
    [75] MICHELI D, MORLES R B, MARCHETTI M, et al. Broadband electromagnetic characterization of carbon foam to metal contact[J]. Carbon, 2014, 68: 149-158. doi: 10.1016/j.carbon.2013.10.074
    [76] ZHANG Y, HUANG Y, ZHANG T, et al. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam[J]. Advanced Materials, 2015, 27(12): 2049-2053. doi: 10.1002/adma.201405788
    [77] SONG W-L, CAO M-S, LU M-M, et al. Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding[J]. Carbon, 2014, 66: 67-76. doi: 10.1016/j.carbon.2013.08.043
    [78] LE K Y, VILLARUZ A E, ZHENG Y, et al. Role of phenol-soluble modulins in Staphylococcus epidermidis biofilm formation and infection of indwelling medical devices[J]. Journal of Molecular Biology, 2019, 431(16): 3015-3027. doi: 10.1016/j.jmb.2019.03.030
    [79] ZHOU Z, SONG Q, HUANG B, et al. Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance[J]. ACS Nano, 2021, 15(7): 12405-12417. doi: 10.1021/acsnano.1c04526
    [80] ZHAO S, ZHANG H-B, LUO J-Q, et al. Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances[J]. ACS Nano, 2018, 12(11): 11193-11202. doi: 10.1021/acsnano.8b05739
    [81] GUO Z, REN P, WANG J, et al. Multifunctional sandwich-structured magnetic-electric composite films with Joule heating capacities toward absorption-dominant electromagnetic interference shielding[J]. Composites Part B:Engineering, 2022, 236: 109836. doi: 10.1016/j.compositesb.2022.109836
    [82] WANG Z, CHENG Z, XIE L, et al. Flexible and lightweight Ti3C2Tx MXene/Fe3O4@ PANI composite films for high-performance electromagnetic interference shielding[J]. Ceramics International, 2021, 47(4): 5747-5757. doi: 10.1016/j.ceramint.2020.10.161
    [83] HU S, LI S, XU W, et al. Core@ shell and sandwich-like Ti3C2Tx@ Ni particles with enhanced electromagnetic interference shielding performance[J]. Ceramics International, 2021, 47(21): 29995-30004. doi: 10.1016/j.ceramint.2021.07.174
    [84] TIAN W, VAHIDMOHAMMADI A, WANG Z, et al. Layer-by-layer self-assembly of pillared two-dimensional multilayers[J]. Nature Communications, 2019, 10(1): 2558. doi: 10.1038/s41467-019-10631-0
    [85] WANG Y, PENG H-K, LI T-T, et al. MXene-coated conductive composite film with ultrathin, flexible, self-cleaning for high-performance electromagnetic interference shielding[J]. Chemical Engineering Journal, 2021, 412: 128681. doi: 10.1016/j.cej.2021.128681
    [86] LI Y, CHEN Y, LIU Y, et al. Holocellulose nanofibrils assisted exfoliation to prepare MXene-based composite film with excellent electromagnetic interference shielding performance[J]. Carbohydrate Polymers, 2021, 274: 118652. doi: 10.1016/j.carbpol.2021.118652
    [87] XIANG Z, WANG X, ZHANG X, et al. Self-assembly of nano/microstructured 2D Ti3CNTx MXene-based composites for electromagnetic pollution elimination and Joule energy conversion application[J]. Carbon, 2022, 189: 305-318. doi: 10.1016/j.carbon.2021.12.075
    [88] LUO J-Q, ZHAO S, ZHANG H-B, et al. Flexible, stretchable and electrically conductive MXene/natural rubber nanocomposite films for efficient electromagnetic interference shielding[J]. Composites Science and Technology, 2019, 182: 107754. doi: 10.1016/j.compscitech.2019.107754
    [89] SUN R, ZHANG H B, LIU J, et al. Highly conductive transition metal carbide/carbonitride (MXene)@ polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding[J]. Advanced Functional Materials, 2017, 27(45): 1702807. doi: 10.1002/adfm.201702807
    [90] XU M-K, LIU J, ZHANG H-B, et al. Electrically conductive Ti3C2Tx MXene/polypropylene nanocomposites with an ultralow percolation threshold for efficient electromagnetic interference shielding[J]. Industrial & Engineering Chemistry Research, 2021, 60(11): 4342-4350.
    [91] WU Z, YANG Z, JIN C, et al. Accurately Engineering 2 D/2D/0D Heterojunction In Hierarchical Ti3C2Tx MXene Nanoarchitectures for Electromagnetic Wave Absorption and Shielding[J]. ACS Applied Materials & Interfaces, 2021, 13(4): 5866-5876.
    [92] QIAN K, ZHOU Q, WU H, et al. Carbonized cellulose microsphere@ void@ MXene composite films with egg-box structure for electromagnetic interference shielding[J]. Composites Part A:Applied Science and Manufacturing, 2021, 141: 106229. doi: 10.1016/j.compositesa.2020.106229
    [93] LIU L X, CHEN W, ZHANG H B, et al. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity[J]. Advanced Functional Materials, 2019, 29(44): 1905197. doi: 10.1002/adfm.201905197
    [94] IQBAL A, SAMBYAL P, KOO C M. 2D MXenes for electromagnetic shielding: a review[J]. Advanced Functional Materials, 2020, 30(47): 2000883. doi: 10.1002/adfm.202000883
  • 加载中
图(13)
计量
  • 文章访问数:  132
  • HTML全文浏览量:  94
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-26
  • 修回日期:  2023-11-26
  • 录用日期:  2023-12-09
  • 网络出版日期:  2023-12-31
  • 刊出日期:  2024-07-15

目录

    /

    返回文章
    返回