留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MXene基复合水凝胶在修复感染创面中的研究进展

吴晓娜 汪宜宇 赵凯

吴晓娜, 汪宜宇, 赵凯. MXene基复合水凝胶在修复感染创面中的研究进展[J]. 复合材料学报, 2024, 41(7): 3431-3445.
引用本文: 吴晓娜, 汪宜宇, 赵凯. MXene基复合水凝胶在修复感染创面中的研究进展[J]. 复合材料学报, 2024, 41(7): 3431-3445.
WU Xiaona, WANG Yiyu, ZHAO Kai. Antibacterial mechanism of MXene and its composite hydrogel application in infective wound healing[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3431-3445.
Citation: WU Xiaona, WANG Yiyu, ZHAO Kai. Antibacterial mechanism of MXene and its composite hydrogel application in infective wound healing[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3431-3445.

MXene基复合水凝胶在修复感染创面中的研究进展

基金项目: 国家自然科学基金(32170844)
详细信息
    通讯作者:

    赵凯,男,二级教授,主要从事生物医药载体材料领域的科研工作。 E-mail:zybin395@126.co

  • 中图分类号: TB332

Antibacterial mechanism of MXene and its composite hydrogel application in infective wound healing

Funds: National Natural Science Foundation of China (No.32170844)
  • 摘要: 感染创面严重危害着人类的生活质量甚至是生命健康,因此研发高效且副作用小的抗菌生物材料用于修复感染创面具有广阔的市场前景。二维过渡金属碳化物(MXene)是一种新型的二维片状材料,具有优异的抗菌性能,其抗菌机制主要包括物理捕获理论,红外热效应,活性氧(ROS)生成理论,胞间分子泄露理论等,因此MXene有望成为一种更安全、有效、广谱的抗菌手段。通过水凝胶包裹MXene制成的MXene复合水凝胶对比单纯水凝胶具有更佳的抗菌,抗氧化性以及光热效应等优势。本文综述了MXene的抗菌机制,并就近年来报道的MXene复合水凝胶修复感染创面的研究进行全面综述和总结。

     

  • 图  1  MXene的制备流程图[26]

    Figure  1.  Flow chart for the preparation of MXene[26]

    图  2  MXene的抗菌机制

    Figure  2.  Bacteriostatic mechanism of MXene

    图  3  (a)海绵状大孔水凝胶体系(SM-水凝胶)的设计策略;(b)将多功能sm水凝胶应用于伤口愈合[46]

    Figure  3.  (a) Design strategy of a cavernous macroporous hydrogel system (SM-hydrogel); (b) Application of multi-functional sm hydrogels to wound healing [46]

    图  4  (a)可愈合,可注射和抗菌MXene水凝胶的制造示意图;(b)人体健康监测;(c)MXene水凝胶用于伤口治疗[47]

    Figure  4.  (a) Schematic diagram of the manufacture of a healing, injectable and antibacterial MXene hydrogel; (b) Human health monitoring; (c) MXene hydrogel for wound treatment [47]

    图  5  (a)聚乙烯醇(PVA)/聚多巴胺(PDA)/MXene/硫化铜(CuS)纳米催化水凝胶的制备示意图;(b)纳米催化复合水凝胶的抗菌机制及促进皮肤再生[48]

    Figure  5.  (a) Schematic diagram of preparation of polyvinyl alcohol (PVA)/polydopamine (PDA) /MXene/ copper sulfide (CuS) nanocatalytic hydrogels; (b) Antibacterial mechanism of nano-catalytic composite hydrogels and their promotion of skin regeneration [48]

    图  6  (a)MXene的金属离子激发相互作用示意图;(b-d) MXene分散体、水凝胶和冻干单体的照片;(e)分散浓度为5和10 mg mL−1时形成的MXene水凝胶的储存模量和损失模量[49]

    Figure  6.  (a) Schematic diagram of the metal ion excitation interaction of MXene; (b-d) Photographs of MXene dispersions, hydrogels and freeze-dried monomers; (e) Storage and loss moduli of MXene hydrogels formed at dispersion concentrations of 5 and 10 mg mL−1[49]

    图  7  (a)MXene@聚多巴胺(PDA)纳米片的合成图;(b)多巴胺改性的透明质酸(HA-DA)/MXene@PDA水凝胶制备示意图;(c)通过光热促进感染糖尿病创面愈合机制[53]

    Figure  7.  (a) Synthesis of MXen@polydopamine (PDA) nanosheets; (b) Schematic diagram of preparation of dopamine-modified hyaluronic acid (HA-DA) /MXene@PDA hydrogel; (c) Promoting the healing mechanism of infected diabetic wound through light and heat[53]

    图  8  海藻酸钠,MXene,琼脂复合凝胶(MSG)-Zn2+水凝胶化学-光热协同治疗局部细菌感染示意图[54]

    Figure  8.  Diagram of sodium alginate, MXene, AGAR complex gel (MSG) -Zn2+ hydrogel chemics-photothermal synergistic treatment of local bacterial infection.[54]

    图  9  (a)再生细菌纤维素(rBC)/MXene水凝胶通过电刺激促进创面愈合机制示意图;(b)水凝胶活/死亡染色;(c-d)rBC/MXene水凝胶电刺激促进伤口愈合[58]

    Figure  9.  (a) Schematic diagram of the mechanism by which regenerated bacterial cellulose (rBC) /MXene hydrogel promotes wound healing through electrical stimulation; (b) Hydrogel live/dead staining; (c-d) rBC/MXene hydrogel electrical stimulation promotes wound healing[58]

    图  10  MXene-海藻酸醛(ADA)-明胶(GEL)复合水凝胶的制备示意图[59]

    Figure  10.  Preparation diagram of MXene- alginate aldehyde (ADA)-gelatin (GEL) composite hydrogel[59]

    图  11  MXene基复合水凝胶给药系统的制备与应用示意图[65]

    Figure  11.  Schematic illustration of the preparation and application of stimuli-responsive MXene-based hydrogel system[65]

    图  12  以Ti3C2纳米片为交联剂,原位自由基聚合法制备Ti3C2/丙烯酰胺(PAM)水凝胶[66]

    Figure  12.  Ti3C2/ acrylamide (PAM) hydrogel was prepared by in-situ radical polymerization using Ti3C2 nanosheets as crosslinking agent[66].

  • [1] ARNAOUTELI S, BAMFORD N C, STANLEY-WALL N R, et al. Bacillus subtilis biofilm formation and social interactions[J]. Nature Reviews Microbiology, 2021, 19(9): 600-614. doi: 10.1038/s41579-021-00540-9
    [2] EVELHOCH S R. Biofilm and chronic nonhealing wound infections[J]. Surgical Clinics, 2020, 100(4): 727-732.
    [3] QIAN L W, FOURCAUDOT A B, YAMANE K, et al. Exacerbated and prolonged inflammation impairs wound healing and increases scarring[J]. Wound repair and regeneration, 2016, 24(1): 26-34. doi: 10.1111/wrr.12381
    [4] TANG Q, XUE N, DING X, et al. Role of wound microbiome, strategies of microbiota delivery system and clinical management[J]. Advanced Drug Delivery Reviews, 2022: 114671.
    [5] ZHANG Y S, KHADEMHOSSEINI A. Advances in engineering hydrogels[J]. Science, 2017, 356(6337): eaaf3627. doi: 10.1126/science.aaf3627
    [6] NEGUT I, GRUMEZESCU V, GRUMEZESCU A M. Treatment strategies for infected wounds[J]. Molecules, 2018, 23(9): 2392. doi: 10.3390/molecules23092392
    [7] WU J, PAN Z, ZHAO Z Y, et al. Anti-Swelling, Robust, and Adhesive Extracellular Matrix-Mimicking Hydrogel Used as Intraoral Dressing[J]. Advanced Materials, 2022, 34(20): 2200115. doi: 10.1002/adma.202200115
    [8] QI X, ZHU T, HU W, et al. Multifunctional polyacrylamide/hydrated salt/MXene phase change hydrogels with high thermal energy storage, photothermal conversion capability and strain sensitivity for personal healthcare[J]. Composites Science and Technology, 2023, 234: 109947. doi: 10.1016/j.compscitech.2023.109947
    [9] Zhu Y, Liu J, Guo T, et al. Multifunctional Ti3C2Tx MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic-interference shielding[J]. ACS nano, 2021, 15(1): 1465-1474. doi: 10.1021/acsnano.0c08830
    [10] HAESLER E, SWANSON T, OUSEY K, et al. Clinical indicators of wound infection and biofilm: reaching international consensus[J]. Journal of wound care, 2019, 28(Sup3b): s4-s12. doi: 10.12968/jowc.2019.28.Sup3b.S4
    [11] 王娜, 李少侠, 曹娜娜, 等. 骨科创伤创面感染的病原菌分布及耐药性分析[J]. 中国卫生检验杂志, 2020, 30(14): 1695-1697.

    WANG Na, LI Shaoxia, CAO Nana, et al. Analysis of pathogenic bacteria distribution and drug resistance in orthopedic wound infection[J]. Chinese Journal of Health Laboratory Technology, 2020, 30(14): 1695-1697 (in Chinese).
    [12] 吴敏, 朱祉冰, 石冰, 龚彩霞, 李杨. 预防性使用抗生素对唇裂术后创面感染的影响研究[J]. 华西口腔医学杂志, 2021, 39(6): 709-711.

    WU Min, ZHU Zhi-Bing, SHI Bing, GONG Cai-Xia, LI Yang. Effect of prophylactic antibiotics on postoperative wound infection of cleft lip[J]. West China Journal of Stomatology, 2019, 39(6): 709-711 (in Chinese).
    [13] LUO M, WANG M, NIU W, et al. Injectable self-healing anti-inflammatory europium oxide-based dressing with high angiogenesis for improving wound healing and skin regeneration[J]. Chemical Engineering Journal, 2021, 412: 128471. doi: 10.1016/j.cej.2021.128471
    [14] 陈梦越, 李乐之. 慢性创面细菌生物膜相关微环境的研究进展[J]. 中华护理杂志, 2016, 51(12): 1483-1486. doi: 10.3761/j.issn.0254-1769.2016.12.015

    CHEN Mengyue, LI Lezhi. Research progress of bacterial biofilm-related microenvironment in chronic wound[J]. Chinese Journal of Nursing, 2016, 51(12): 1483-1486 (in Chinese) doi: 10.3761/j.issn.0254-1769.2016.12.015
    [15] FENG W, LUO H, WANG Y, et al. Ultrasonic assisted etching and delaminating of Ti3C2 Mxene[J]. Ceramics International, 2018, 44(6): 7084-7087. doi: 10.1016/j.ceramint.2018.01.147
    [16] LIU G, SHEN J, JI Y, et al. Two-dimensional Ti2CTx MXene membranes with integrated and ordered nanochannels for efficient solvent dehydration[J]. Journal of Materials Chemistry A, 2019, 7(19): 12095-12104. doi: 10.1039/C9TA01507H
    [17] SAHA S, AROLE K, RADOVIC M, et al. One-step hydrothermal synthesis of porous Ti3C2Tz MXene/rGO gels for supercapacitor applications[J]. Nanoscale, 2021, 13(39): 16543-16553. doi: 10.1039/D1NR02114A
    [18] SHEN B, LIAO X, ZHANG X, et al. Synthesis of Nb2C MXene-based 2D layered structure electrode material for high-performance battery-type supercapacitors[J]. Electrochimica Acta, 2022, 413: 140144. doi: 10.1016/j.electacta.2022.140144
    [19] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article: MXenes: a new family of two-dimensional materials[J]. Advanced materials, 2014, 26(7): 992-1005. doi: 10.1002/adma.201304138
    [20] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced materials, 2011, 23(37): 4248-4253. doi: 10.1002/adma.201102306
    [21] LUKATSKAYA M, MASHTALIR O, REN C, et al. Cation in-tercalation and high volumetric capacitance of two-dimen-sional titanium carbide[J]. Science, 2013, 341(6153): 1502-1505. doi: 10.1126/science.1241488
    [22] NAGUIB, MICHAEL, et al. "Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. " Advanced Materials 23.37(2011): 4248-4253.
    [23] NAGUIB M, BARSOUM M W, GOGOTSI Y. Ten years of progress in the synthesis and development of MXenes[J]. Advanced Materials, 2021, 33(39): 2103393. doi: 10.1002/adma.202103393
    [24] JASIM S A, HADI J M, OPULENCIA M J C, et al. MXene/metal and polymer nanocomposites: preparation, properties, and applications[J]. Journal of Alloys and Compounds, 2022, 917: 165404. doi: 10.1016/j.jallcom.2022.165404
    [25] WANG Y, YUE Y, CHENG F, et al. Ti3C2Tx MXene-Based Flexible Piezoresistive Physical Sensors. ACS Nano. 2022;16(2): 1734-1758.
    [26] SEIDI F, ARABI SHAMSABADI A, DADASHI FIROUZJAEI M, et al. MXenes Antibacterial Properties and Applications: A Review and Perspective[J]. Small, 2023, 19(14): 2206716. doi: 10.1002/smll.202206716
    [27] SUN W, SHAH S A, CHEN Y, et al. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution[J]. Journal of Materials Chemistry A, 2017, 5(41): 21663-21668. doi: 10.1039/C7TA05574A
    [28] LI T, YAO L, LIU Q, et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T= OH, O) via alkali treatment[J]. Angewandte Chemie International Edition, 2018, 57(21): 6115-6119. doi: 10.1002/anie.201800887
    [29] LU B, ZHU Z, MA B, et al. 2D MXene nanomaterials for versatile biomedical applications: current trends and future prospects[J]. Small, 2021, 17(46): 2100946. doi: 10.1002/smll.202100946
    [30] 李艳艳, 赵立环, 杨玉洁. MXene及其复合材料的抗菌纺织品研究进展[J]. 复合材料学报, 2023, 40(4): 1896-1912.

    LI Yanyan, ZHAO Lihuan, YANG Yujie. Research progress of antibacterial textiles from MXene and its composites[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1896-1912(in Chinese).
    [31] CHENG H, WANG J, YANG Y, et al. Ti3C2TX MXene modified with ZnTCPP with bacteria capturing capability and enhanced visible light photocatalytic antibacterial activity[J]. Small, 2022, 18(26): 2200857. doi: 10.1002/smll.202200857
    [32] HAN M, ZHANG D, SINGH A, et al. Versatility of infrared properties of MXenes[J]. Materials Today, 2023, 64: 31-39. doi: 10.1016/j.mattod.2023.02.024
    [33] CAI Z, MA Y, YUN M, et al. Multifunctional MXene/holey graphene films for electromagnetic interference shielding, Joule heating, and photothermal conversion[J]. Composites Part B:Engineering, 2023, 251: 110477. doi: 10.1016/j.compositesb.2022.110477
    [34] ZHANG D, HUANG L, SUN D W, et al. Bio-interface engineering of MXene nanosheets with immobilized lysozyme for light-enhanced enzymatic inactivation of methicillin-resistant Staphylococcus aureus[J]. Chemical Engineering Journal, 2023, 452: 139078. doi: 10.1016/j.cej.2022.139078
    [35] HU W , PENG C , LUO W , et al. Graphene-based antibacterial paper. ACS Nano 4: 4317-4323[J]. Acs Nano, 2010, 4(7): 4317-4323.
    [36] PANDEY R P, RASHEED P A, GOMEZ T, et al. Effect of sheet size and atomic structure on the antibacterial activity of Nb-MXene nanosheets[J]. ACS Applied Nano Materials, 2020, 3(11): 11372-11382. doi: 10.1021/acsanm.0c02463
    [37] LEI J, SUN L, HUANG S, et al. The antimicrobial peptides and their potential clinical applications[J]. American journal of translational research, 2019, 11(7): 3919.
    [38] EPAND R M, EPAND R F. Domains in bacterial membranes and the action of antimicrobial agents[J]. Molecular BioSystems, 2009, 5(6): 580-587. doi: 10.1039/b900278m
    [39] LEE O S, MADJET M E, MAHMOUD K A. Antibacterial mechanism of multifunctional MXene nanosheets: domain formation and phase transition in lipid bilayer[J]. Nano Letters, 2021, 21(19): 8510-8517. doi: 10.1021/acs.nanolett.1c01986
    [40] HOLZER-GEISSLER J C J, SCHWINGENSCHUH S, ZACHARIAS M, et al. The impact of prolonged inflammation on wound healing[J]. Biomedicines, 2022, 10(4): 856. doi: 10.3390/biomedicines10040856
    [41] VELNAR T, BAILEY T, SMRKOLJ V. The wound healing process: an overview of the cellular and molecular mechanisms[J]. Journal of international medical research, 2009, 37(5): 1528-1542. doi: 10.1177/147323000903700531
    [42] WANG D, ZHANG Y, LU X, et al. Chemical formation of soft metal electrodes for flexible and wearable electronics[J]. Chemical Society Reviews, 2018, 47(12): 4611-4641. doi: 10.1039/C7CS00192D
    [43] YUK H, LU B, ZHAO X. Hydrogel bioelectronics[J]. Chemical Society Reviews, 2019, 48(6): 1642-1667. doi: 10.1039/C8CS00595H
    [44] NEGUT I, GRUMEZESCU V, GRUMEZESCU A M. Treatment strategies for infected wounds[J]. Molecules, 2018, 23(9): 2392. doi: 10.3390/molecules23092392
    [45] PARNHAM A, BOUSFIELD C. The influence of matrix metalloproteases and biofilm on chronic wound healing: a discussion. Br J Community Nurs. 2018;23(Sup3): S22-S29
    [46] WEI C, TANG P, TANG Y, et al. Sponge-Like Macroporous Hydrogel with Antibacterial and ROS Scavenging Capabilities for Diabetic Wound Regeneration[J]. Advanced Healthcare Materials, 2022, 11(20): 2200717. doi: 10.1002/adhm.202200717
    [47] LI M, ZHANG Y, LIAN L, et al. Flexible Accelerated-Wound-Healing Antibacterial MXene-Based Epidermic Sensor for Intelligent Wearable Human-Machine Interaction[J]. Advanced Functional Materials, 2022, 32(47): 2208141. doi: 10.1002/adfm.202208141
    [48] SU Y, ZHANG X, WEI Y, et al. Nanocatalytic hydrogel with rapid photodisinfection and robust adhesion for fortified cutaneous regeneration[J]. ACS Applied Materials & Interfaces, 2023, 15(5): 6354-6370.
    [49] DENG Y, SHANG T, WU Z, et al. Fast gelation of Ti3C2Tx MXene initiated by metalions[J]. Advanced Materials, 2019, 31(43): 1902432. doi: 10.1002/adma.201902432
    [50] LIN Z, LIU J, PENG W, et al. Highly stable 3D Ti3C2Tx MXene-based foam architectures toward high-performance terahertz radiation shielding[J]. ACS nano, 2020, 14(2): 2109-2117. doi: 10.1021/acsnano.9b08832
    [51] LIN H, GAO S, DAI C, et al. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows[J]. Journal of the American Chemical Society, 2017, 139(45): 16235-16247. doi: 10.1021/jacs.7b07818
    [52] XU D, LI Z, LI L, et al. Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications[J]. Advanced Functional Materials, 2020, 30(47): 2000712. doi: 10.1002/adfm.202000712
    [53] LI Y, FU R, DUAN Z, et al. Artificial nonenzymatic antioxidant MXene nanosheet-anchored injectable hydrogel as a mild photothermal-controlled oxygen release platform for diabetic wound healing[J]. Acs Nano, 2022, 16(5): 7486-7502. doi: 10.1021/acsnano.1c10575
    [54] HU Y, ZENG Q, HU Y, et al. MXene/zinc ion embedded agar/sodium alginate hydrogel for rapid and efficient sterilization with photothermal and chemical synergetic therapy[J]. Talanta, 2024, 266: 125101. doi: 10.1016/j.talanta.2023.125101
    [55] HAO S, HAN H, YANG Z, et al. Recent advancements on photothermal conversion and antibacterial applications over MXenes-based materials[J]. Nano-Micro Letters, 2022, 14(1): 178. doi: 10.1007/s40820-022-00901-w
    [56] CHEN R, TANG H, DAI Y, et al. Robust bioinspired mxene–hemicellulose composite films with excellent electrical conductivity for multifunctional electrode applications[J]. ACS nano, 2022, 16(11): 19124-19132. doi: 10.1021/acsnano.2c08163
    [57] YANG X, ZHANG C, DENG D, et al. Multiple stimuli-responsive MXene-based hydrogel as intelligent drug delivery carriers for deep chronic wound healing[J]. Small, 2022, 18(5): 2104368. doi: 10.1002/smll.202104368
    [58] MAO L, HU S, GAO Y, et al. Biodegradable and electroactive regenerated bacterial cellulose/MXene (Ti3C2Tx) composite hydrogel as wound dressing for accelerating skin wound healing under electrical stimulation[J]. Advanced healthcare materials, 2020, 9(19): 2000872. doi: 10.1002/adhm.202000872
    [59] ZHU H, DAI W, WANG L, et al. Electroactive oxidized alginate/gelatin/MXene (Ti3C2Tx) composite hydrogel with improved biocompatibility and self-healing property[J]. Polymers, 2022, 14(18): 3908. doi: 10.3390/polym14183908
    [60] XUAN J, WANG Z, CHEN Y, et al. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance[J]. Angewandte Chemie, 2016, 128(47): 14789-14794. doi: 10.1002/ange.201606643
    [61] CAO Y, WU T, ZHANG K, et al. Engineered exosome-mediated near-infrared-II region V2C quantum dot delivery for nucleus-target low-temperature photothermal therapy[J]. Acs Nano, 2019, 13(2): 1499-1510.
    [62] LIN H, WANG X, YU L, et al. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion[J]. Nano letters, 2017, 17(1): 384-391. doi: 10.1021/acs.nanolett.6b04339
    [63] FENG W, WANG R, ZHOU Y, et al. Ultrathin molybdenum carbide MXene with fast biodegradability for highly efficient theory-oriented photonic tumor hyperthermia[J]. Advanced Functional Materials, 2019, 29(22): 1901942. doi: 10.1002/adfm.201901942
    [64] LIU Y, XIAO Y, CAO Y, et al. Construction of chitosan-based hydrogel incorporated with antimonene nanosheets for rapid capture and elimination of bacteria[J]. Advanced Functional Materials, 2020, 30(35): 2003196. doi: 10.1002/adfm.202003196
    [65] ZHENG Y, YAN Y, LIN L, et al. Titanium carbide MXene-based hybrid hydrogel for chemo-photothermal combinational treatment of localized bacterial infection[J]. Acta Biomaterialia, 2022, 142: 113-123. doi: 10.1016/j.actbio.2022.02.019
    [66] ZHANG P, YANG X J, LI P, et al. Fabrication of novel MXene (Ti3C2Tx)/polyacrylamide nanocomposite hydrogels with enhanced mechanical and drug release properties[J]. Soft Matter, 2020, 16(1): 162-169. doi: 10.1039/C9SM01985E
  • 加载中
图(12)
计量
  • 文章访问数:  201
  • HTML全文浏览量:  137
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-27
  • 修回日期:  2023-11-14
  • 录用日期:  2023-12-01
  • 网络出版日期:  2023-12-27
  • 刊出日期:  2024-07-15

目录

    /

    返回文章
    返回