留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

选区激光熔化B4C/Al复合材料的组织与性能

邓昀麒 胡启耀

邓昀麒, 胡启耀. 选区激光熔化B4C/Al复合材料的组织与性能[J]. 复合材料学报, 2024, 41(6): 3232-3240.
引用本文: 邓昀麒, 胡启耀. 选区激光熔化B4C/Al复合材料的组织与性能[J]. 复合材料学报, 2024, 41(6): 3232-3240.
DENG Yunqi, HU Qiyao. Microstructure and properties investigation of B4C/Al composite materialsfabricated by selective laser melting[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3232-3240.
Citation: DENG Yunqi, HU Qiyao. Microstructure and properties investigation of B4C/Al composite materialsfabricated by selective laser melting[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3232-3240.

选区激光熔化B4C/Al复合材料的组织与性能

基金项目: 江西省自然科学基金面上项目(20192BAB206003);校级”课程思政“示范课程建设经费(sz2218);校级教改课题(JY21026)
详细信息
    通讯作者:

    胡启耀,博士,讲师,硕士生导师,研究方向为金属新材料的制备及其成形数值模拟 E-mail:huqiyao2008@163.com

  • 中图分类号: TB333

Microstructure and properties investigation of B4C/Al composite materialsfabricated by selective laser melting

Funds: Natural Science Foundation of Jiangxi Province, No. 20192BAB206003; University-level "Curriculum Ideological and Political" demonstration course construction funds (sz2218); School Level Teaching Reform Project (JY21026)
  • 摘要: 为了解决B4C/Al复合材料制备过程中B4C颗粒分布不均、团聚及易与Al基体发生剧烈反应的问题。本文采用选区激光熔化法制备了B4C/Al复合材料,研究了激光功率和Ti元素对B4C/Al复合材料微观组织和力学性能的影响。结果表明,B4C/Al复合材料的致密度随激光功率的增大先增大后减少,激光功率240 W时致密度达到最大为94.1%;制备过程中B4C颗粒易与Al基体发生界面反应并且随激光功率增大而增大,形成界面产物Al3BC和Al3B48C2脆性相和微裂纹,导致界面结合性能降低;加Ti的B4C/Al复合材料的致密度提高到95.2%,形成的界面产物TiC和TiB2能有效抑制界面反应,界面清晰完整结合性能高,复合材料抗拉强度和伸长率分别提高41%、49.3%,拉伸断裂方式由脆性断裂转变为韧性断裂。

     

  • 图  1  (a) 选区激光熔化(SLM)制备的B4C/Al试件;(b)拉伸尺寸图

    Figure  1.  (a) B4C/Al composites prepared by selective laser melt (SLM) technology; (b) Stretch the dimensional drawing

    图  2  不同激光功率下制备B4C/Al复合材料的SEM图像:(a)(b)220 W;(c)(d)240 W;(e)(f)260 W;(g)(h)280 W

    Figure  2.  SEM images of as-prepared B4 C/Al composites with different laser powers: (a) (b) 220 W; (c) (d) 240 W; (e) (f) 260 W; (g) (h) 280 W

    图  3  B4C/Al复合材料致密度随激光功率变化的柱形图

    Figure  3.  Column diagram of the density of as-prepared B4C/Al composites with the increase of laser power

    图  4  B4C/Al复合材料的电镜图像:(a)(b)无Ti复合材料的SEM图;(c)(d) 含Ti复合材料的SEM图; (e)(f)含Ti复合材料的BSE图

    Figure  4.  Electron microscope images of as-prepared B4C/Al composites: (a) (b) SEM images of composites without Ti; (c) (d) SEM diagram of composites with Ti; (e) (f) BSE diagram of composites with Ti

    图  5  (a)无Ti复合材料OM图像及致密度;(b)含Ti复合材料OM图像及致密度;(c)无Ti时B4C/Al界面微结构TEM图像;(d)含Ti时B4C/Al界面微结构TEM图像;(e)含Ti复合材料的HRTEM图像;(f) 含Ti复合材料的SAED图像

    Figure  5.  (a) OM image and density of composites without Ti; (b) OM image and density of composites containing Ti; (c) TEM images of as-prepared B4C/Al interface microstructure without Ti; (d) TEM images of as-prepared B4C/Al interface microstructure with Ti; (e) HRTEM images of composites with Ti; (f) SAED images of composites with Ti

    图  6  (a) (b)无Ti复合材料TEM面扫和SEM线扫;(c) (d)含Ti复合材料TEM面扫和SEM线扫

    Figure  6.  (a)(b) TEM surface scanning and SEM line scanning without Ti composite materials; (c)(d) TEM surface scanning and SEM line scanning of composites with Ti

    图  7  B4C/Al复合材料的XRD图像:(a)无Ti复合材料;(b)含Ti复合材料

    Figure  7.  XRD images of as-prepared B4C/Al composites: (a) composites without Ti; (b) Composite materials with Ti

    图  8  含Ti复合材料反应(4)-(10)的吉布斯自由能∆G随温度的变化图

    Figure  8.  The gibbs free energy ∆G of the reaction (4)-(10) of composites withTi as a function of temperature

    图  9  B4C/Al复合材料的反应机制:(a)无Ti复合材料;(b)含Ti复合材料

    Figure  9.  Reaction mechanism of B4C/Al composites: (a) composites without Ti; (b) Composite materials with Ti

    图  10  B4C/Al复合材料的应力应变曲线图

    Figure  10.  Stress-strain curves of as-prepared B4C/Al composites

    图  11  B4C/Al复合材料的SEM断口图像:(a)(b)无Ti复合材料;(c)(d)含Ti复合材料

    Figure  11.  SEM fracture images of B4C/Al composites: (a) (b) composites without Ti; (c) (d) Composites with Ti

    表  1  铝合金AlSi10 Mg的化学成分(wt%)

    Table  1.   Chemical composition of AlSi10 Mg (wt%)

    ElementAlSiMgZnCuNiFeTiMnO
    ContentBal9.870.34<0.01<0.01<0.010.86<0.01<0.010.051
    下载: 导出CSV

    表  2  SLM制备B4C/Al复合材料的工艺参数

    Table  2.   Process parameters of B4C/Al composites prepared by SLM

    B4C/Al (Ti+B4C)/Al
    Processing parameters Parameter values Parameter values
    Laser power /W 220、240、260、280 240
    Scanning speed/(mm·s−1) 1200 1200
    Scanning spacing /mm 0.17 0.17
    Layer thickness /mm 0.03 0.03
    下载: 导出CSV

    表  3  B4C/Al复合材料的力学性能

    Table  3.   Mechanical properties of as-prepared B4C/Al composites

    Materials Hardness/HV Ultimat tensile stress/MPa Elongation/%
    AlSi10 Mg[29] 304 7.4
    B4C/AlSi10 Mg 139.9(±6) 238(±9) 6.9(±1.5)
    (B4C+Ti)/AlSi10 Mg 151.7(±7.5) 335.6(±4.4) 10.3(±1.3)
    (B4C+Ti)/Al Stirring casting[25] 52.1 139 9.7
    下载: 导出CSV
  • [1] SHARMA D K, SHARMA M, UPADHYAY G. Boron carbide (B4C) reinforced aluminum matrix composites (AMCs)[J]. International Journal of Innovative Technology and Exploring Engineering, 2019, 9(1): 2194-2203. doi: 10.35940/ijitee.A4766.119119
    [2] LEMINE A S, FAYYAZ O, YUSUF M, et al. Microstructure and mechanical properties of aluminum matrix composites with bimodal-sized hybrid NbC-B4C reinforcements[J]. Materials Today Communications, 2022, 33: 104512. doi: 10.1016/j.mtcomm.2022.104512
    [3] 杨涛, 刘润爱, 王文先, 等. 热轧高含量B4C颗粒增强Al基复合材料的成形性能[J]. 复合材料学报, 2021, 38(7): 2234-2243.

    YANG Tao, LIU Runai, WANG Wenxian, et al. Formability of high content B4C particle reinforced Al matrix composites by hot rolling[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2234-2243(in Chinese).
    [4] NIRALA A, SOREN S, KUMAR N, et al. A comprehensive review on mechanical properties of Al-B4C stir casting fabricated composite[J]. Materials Today: Proceedings, 2020, 21(3): 1432-1435.
    [5] CHEN X G, HARK R. Developments of Al-30%B4C metal matrix composites for neutron absorber material[J]. TMS Annual Meeting, 2008: 3-9.
    [6] WANG Z X, LI Q L, ZHENG J Y, et al. Improving Al wettability on B4C by transition metal doping: A combined DFT and experiment study[J]. Rare Metal Materials and Engineering, 2017, 46(9): 2345-2351.
    [7] GUO W B, HU Q Y, XIAO P, et al. Effect of Ti element on the interfacial reactions and micro-structures of the Al-B4C composites fabricated by the stir-casting method[J]. Applied Surface Science, 2022, 584: 152619. doi: 10.1016/j.apsusc.2022.152619
    [8] GUO H, ZHANG Z W, ZHANG Y, et al. Improving the mechanical properties of B4C/Al composites by solid-state interfacial reaction[J]. Journal of Alloys and Compounds, 2020, 829: 154521.
    [9] 李明川, 蒋立异, 刘婷婷, 等. 碳纳米管对激光选区熔化成形Al基复合材料的影响[J]. 复合材料学报, 2018, 35(7): 1889-1896. doi: 10.13801/j.cnki.fhclxb.20171108.004

    LI Mingchuan, JIANG Liyi, LIU Tingting, et al. Effect of carbon nanotubes on Al matrix composites fabricated by selected laser melting[J]. Acta Materiae Compositae Sinica, 2018, 35(7): 1889-1896(in Chinese). doi: 10.13801/j.cnki.fhclxb.20171108.004
    [10] CHEN Y, SONG S Q, ZHU S, et al. Selective laser remelting of in-situ Al2O3 particles reinforced AlSi10Mg matrix composite: Densification, microstructure and microhardness[J]. Vacuum, 2021, 191: 110365. doi: 10.1016/j.vacuum.2021.110365
    [11] 宋亢, 坚增运, 王渭中, 等. SLM成形10%SiC颗粒增强铝基复合材料的工艺优化及性能[J]. 材料导报, 2020, 34(S2): 1376-1380.

    SONG Kang, JIAN Zengyun, WANG Weizhong, et al. Proper ties and process optimization of 10%SiCp/AlSi10Mg composites by SLM[J]. Materials Reports, 2020, 34(S2): 1376-1380(in Chinese).
    [12] ZHANG D Y, YI D H, WU X P, et al. SiC reinforced AlSi10Mg composites fabricated by selective laser melting[J]. Journal of Alloys and Compounds, 2022, 894: 162365. doi: 10.1016/j.jallcom.2021.162365
    [13] 章敏立, 吴一, 廉清, 等. 激光选区熔化成形原位自生TiB2/Al-Si复合材料的微观组织和力学性能[J]. 复合材料学报, 2018, 35(11): 3114-3121.

    ZHANG Minli, WU Yi, LIAN Qing, et al. Microstructures and mechanical properties of in situ TiB2/Al-Si composite fabricated by selective laser melting[J]. Acta Materiae Compositae Sinica, 2018, 35(11): 3114-3121(in Chinese).
    [14] XUE G, KE L D, ZHU H H, et al. Influence of processing parameters on selective laser melted SiCp/AlSi10Mg composites: Densification, microstructure and mechanical properties[J]. Materials Science and Engineering: A, 2019, 764: 138155. doi: 10.1016/j.msea.2019.138155
    [15] ANANDKUMAR R, ALMEIDA A, COLAÇO R, et al. Microstructure and wear studies of laser clad Al-Si/SiC(p) composite coatings[J]. Surface and Coatings Technology, 2007, 201(24): 9497-9505.
    [16] VIALA J C, BOUIX J, GONZALEZ G, et al. Chemical reactivity of aluminium with boron carbide[J]. Journal of Materials Science, 1997, 32(17): 4559-4573. doi: 10.1023/A:1018625402103
    [17] WU H Y, ZHANG S C, GAO M X, et al. Microstructure and mechanical properties of multi-carbides/(Al, Si) composites derived from porous B4C preforms by reactive melt infiltration[J]. Materials Science and Engineering: A, 2012, 551: 200-208. doi: 10.1016/j.msea.2012.05.008
    [18] WANG L Z, WANG S, WU J J. Experimental investigation on densification behavior and surface roughness of AlSi10Mg powders produced by selective laser melting[J]. Optics & Laser Technology, 2017, 96: 88-96.
    [19] ZHANG Z, FORTIN K, CHARETTE A, et al. Effect of titanium on microstructure and fluidity of Al–B4C composites[J]. Journal of Materials Science, 2011, 46(9): 3176-3185.
    [20] 郭文波, 胡启耀, 肖鹏. 界面反应产物对 B4C/Al 复合材料颗粒润湿性及界面强度的影响机制[J]. 复合材料学报, 2022, 39(6): 2941-2948.

    GUO Wenbo, HU Qiyao, XIAO Peng. Effect of interfacial reaction products on the wettability and interfacial strength of B4C/Al composites[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2941-2948(in Chinese)
    [21] AZIMI H, NOUROUZI S, JAMAATI R. Effects of Ti particles and T6 heat treatment on the microstructure and mechanical properties of A356 alloy fabricated by compocasting[J]. Materials Science and Engineering:A, 2021, 818: 141443. doi: 10.1016/j.msea.2021.141443
    [22] YI J C, ZHANG X W, RAO J H, et al. In-situ chemical reaction mechanism and non-equilibrium microstructural evolution of (TiB2+TiC)/AlSi10Mg composites prepared by SLM-CS processing[J]. Journal of Alloys and Compounds, 2021, 857: 157553.
    [23] ZHANG L, PANG S P, GU W H, et al. Interface regulation mechanism of Ti doping on B4C/Al composites[J]. Ceramics International, 2023, 49(4): 6113-6118. doi: 10.1016/j.ceramint.2022.10.109
    [24] YI J C, ZHANG X W, LIU G Z, et al. Microstructure and dynamic microhardness of additively manufactured (TiB2+TiC)/AlSi10Mg composites with AlSi10Mg and B4C coated Ti powder[J]. Journal of Alloys and Compounds, 2023, 939: 168718. doi: 10.1016/j.jallcom.2023.168718
    [25] GU D D, MEINERS W, WISSENBACH K, et al. Laser additive manufacturing of metallic components: Materials, processes and mechanisms[J]. International Materials Reviews, 2012, 57(3): 133-164. doi: 10.1179/1743280411Y.0000000014
    [26] ARSLAN G, KARA F, TURAN S. Quantitative X-ray diffraction analysis of reactive infiltrated boron carbide–aluminium composites[J]. Journal of the European Ceramic Society, 2003, 23(8): 1243-1255. doi: 10.1016/S0955-2219(02)00304-7
    [27] 叶大伦, 胡建华. 实用无机物热力学数据手册[M]. 北京: 冶金工业出版社, 2002.

    YE Dalun, HU Jianhua. Practical inorganic thermodynamic data handbook[M]. Beijing: Metallurgical Industry Press, 2002(in Chinese).
    [28] WANG M L, CHEN D, CHEN Z, et al. Mechanical properties of in-situ TiB2/A356 composites[J]. Materials Science and Engineering: A, 2014, 590: 246-254. doi: 10.1016/j.msea.2013.10.021
    [29] 韩静, 吕俊霞, 王晋, 等. 选区激光熔化AlSi10Mg合金不同温度原位拉伸变形行为及断裂机理研究[J]. 材料科学与工艺, 2022, 30(6): 10-19.

    HAN Jing, LYU Junxia, WANG Jin, et al. In-situ investigation of deformation behavior and fracture mechanism of selective laser melting AlSi10Mg alloy at different temperatures[J]. Materials Science and Technology, 2022, 30(6): 10-19(in Chinese).
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  216
  • HTML全文浏览量:  116
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-04
  • 修回日期:  2023-09-09
  • 录用日期:  2023-09-16
  • 网络出版日期:  2023-10-11
  • 刊出日期:  2024-06-15

目录

    /

    返回文章
    返回