留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

虑及温度影响的CFRTP正交切削仿真与实验研究

魏钢 王福吉 贾振元 鞠鹏程 胡晓杭 付饶

魏钢, 王福吉, 贾振元, 等. 虑及温度影响的CFRTP正交切削仿真与实验研究[J]. 复合材料学报, 2024, 42(0): 1-13.
引用本文: 魏钢, 王福吉, 贾振元, 等. 虑及温度影响的CFRTP正交切削仿真与实验研究[J]. 复合材料学报, 2024, 42(0): 1-13.
WEI Gang, WANG Fuji, JIA Zhenyuan, et al. Simulation and experimental study of CFRTP orthogonal cutting considering the influence of temperature[J]. Acta Materiae Compositae Sinica.
Citation: WEI Gang, WANG Fuji, JIA Zhenyuan, et al. Simulation and experimental study of CFRTP orthogonal cutting considering the influence of temperature[J]. Acta Materiae Compositae Sinica.

虑及温度影响的CFRTP正交切削仿真与实验研究

基金项目: 国家自然科学基金(52090053;52105432;52130506);国家重点研发计划( 2018YFA0702803);大连市科技创新基金项目(2021RD08;2022JJ12GX027)
详细信息
    通讯作者:

    付饶,博士,教授,博士生导师,研究方向为复合材料加工 E-mail: r.fu@dlut.edu.cn

  • 中图分类号: TB332

Simulation and experimental study of CFRTP orthogonal cutting considering the influence of temperature

Funds: National Natural Science Foundation of China (52090053; 52105432; 52130506); National Key R&D Program of China (2018YFA0702803); Science and Technology Innovation Foundation of Dalian (2021RD08; 2022JJ12GX027)
  • 摘要: 碳纤维增强热塑性树脂基复合材料(CFRTP)是高端装备减重增效的优选材料。而CFRTP是一种典型的难加工材料,加工中损伤频发。本文对切削CFRTP时的材料去除及损伤形成过程进行了仿真与实验研究。CFRTP切削时易产生塑性变形,且材料性能受温度影响较大。本文建立CFRTP三维正交切削细观仿真模型,并引入J-C模型表征树脂在不同温度下的弹塑性变形。分析了温度及纤维方向角对CFRTP切削去除过程的影响。结果表明,常温下切削,0°及45°纤维方向角时,已加工面较平整,加工质量较好;90°及135°纤维方向角时,纤维弯曲程度明显增大,已加工面有裂纹产生,加工质量较差。高温下切削,0°纤维方向角时,已加工面出现未去除材料;45°纤维方向角时,已加工面出现裂纹,部分纤维未被切断;90°及135°纤维方向角时,已加工面出现更大开裂,工件出现明显的沿厚度方向上的面外变形,发生面外变形的材料难以被有效去除。

     

  • 图  1  碳纤维增强热塑性树脂基复合材料(CFRTP)仿真模型示意图

    Figure  1.  Schematic view of carbon fiber reinforced thermoplastic composites (CFRTP) simulation model

    图  2  CFRTP仿真模型的约束及载荷示意图

    Figure  2.  Constraints and load diagram of CFRTP simulation model

    图  3  CFRTP正交切削实验平台

    Figure  3.  Experimental setup of CFRTP orthogonal cutting

    图  4  CFRTP切削实验工件及刀具

    Figure  4.  Workpiece and tool of CFRTP cutting experiment

    图  5  CFRTP纤维方向角示意图

    Figure  5.  Schematic diagram of CFRTP fiber orientation angle

    图  6  CFRTP常温下成0°纤维方向角切削

    Figure  6.  CFRTP is cut into 0 ° fiber direction angle at room temperature

    图  7  CFRTP高温下成0°纤维方向角切削

    Figure  7.  CFRTP is cut into 0 ° fiber direction angle at high temperature

    图  8  CFRTP常温下成45°纤维方向角切削

    Figure  8.  CFRTP is cut into 45 ° fiber direction angle at room temperature

    图  9  CFRTP高温下成45°纤维方向角切削

    Figure  9.  CFRTP is cut into 45 ° fiber direction angle at high temperature

    图  10  CFRTP常温下成90°纤维方向角切削

    Figure  10.  CFRTP is cut into 90 ° fiber direction angle at room temperature

    图  11  CFRTP高温下成90°纤维方向角切削

    Figure  11.  CFRTP is cut into 90 ° fiber direction angle at high temperature

    图  12  CFRTP常温下成135°纤维方向角切削

    Figure  12.  CFRTP is cut into 135 ° fiber direction angle at room temperature

    图  13  CFRTP高温下成135°纤维方向角切削

    Figure  13.  CFRTP is cut into 135 ° fiber direction angle at high temperature

    图  14  CFRTP沿厚度方向上的面外变形

    Figure  14.  The out-of-plane deformation of CFRTP along the thickness direction

    图  15  温度及纤维方向角对CFRTP面外变形的影响

    Figure  15.  The effects of temperature and fiber orientation angle on the out-of-plane deformation of CFRTP

    表  1  CFRTP仿真模型中的材料性能参数[29-32]

    Table  1.   Material performance parameters in CFRTP simulation model[29-32]

    Material Property Value
    Carbon fber Elastic constants E11= 294 GPa, E22= E33= 30 GPa, μ11=μ22=μ33= 0.2
    G12= G13= 108 GPa, G23= 8.8 GPa
    Longitudinal strength Xt= 4500 MPa, Xc= 2800 MPa
    Transverse strength Yt= 200 MPa, Yc= 1000 MPa
    PEEK Elastic constants E= 4.1 GPa, μ= 0.35
    J-C plastic parameter A, B, C, n, m 132 MPa, 10 MPa, 0.034, 1.2, 0.7
    J-C failure parameter d1-d5 0.05, 1.2, 0.254, -0.009, 1
    Interface Cohesive stiffness k = 6.4 × 105 MPa∕mm
    Normal and Shear strength $t_{\text{n}}^0 = 43{\text{ }}MP{\text{a, }}t_{\text{s}}^0 = t_{\text{t}}^0 = 50{\text{ }}MP{\text{a}}$
    Fracture energy $G_n^C = 1.7{\text{ }}kJ/{{\text{m}}^2}{\text{, }}G_s^C = 2.0{\text{ }}kJ/{{\text{m}}^2}$
    B-K exponent η= 1.09
    EHM Elastic constants E11= 127 GPa, E22= E33= 10.3 GPa, μ11=μ22=μ33= 0.3
    G12= G13= 5.7 GPa, G23= 3.2 GPa
    Notes:E11, E22 and E33 are the elastic modulus of the material in three directions, respectively; μ11, μ22 and μ33 are Poisson's ratio in three directions of the material, respectively; G12, G13 and G23 are the shear modulus in three directions of the material, respectively; Xt is the tensile strength along the direction of carbon fiber; Xc is the compressive strength along the direction of carbon fiber; Yt is the tensile strength perpendicular to the direction of carbon fiber; Yc is the compressive strength perpendicular to the direction of carbon fiber; E and μ are the elastic modulus and Poisson's ratio of PEEK, respectively; A, B, C, n, m are the plastic parameters of J-C constitutive model; d1-d5 are the parameters of J-C damage model; k is the stiffness of the interface; $ {{t}}_{\text{n}}^{\text{0}} $、$ {{t}}_{\text{s}}^{\text{0}} $ and $ {{t}}_{{t}}^{\text{0}} $ are the strength of the interface in one normal direction and two tangential directions respectively; $ {{G}}_{\text{n}}^{\text{c}} $ and $ {{G}}_{\text{s}}^{\text{c}} $ are the interface normal and tangential fracture energy respectively; η is the interface B-K failure parameter.
    下载: 导出CSV

    表  2  CFRTP切削实验参数

    Table  2.   CFRTP cutting experimental parameters

    Parameter Value
    Fiber orientation angle 0°、45°、90°、135°
    Cutting temperature Room temperature (25℃)
    High temperature (200℃)
    Cutting speed/(mm·s−1) 8.33
    Cutting depth/μm 30
    Cutting length/mm 55
    下载: 导出CSV
  • [1] Noonan M, Obande W, Ray D. Simulated end-of-life reuse of composites from marine applications using thermal reshaping of seawater-aged, glass fibre-reinforced acrylic materials[J]. Composites Part B: Engineering, 2023, 111118.
    [2] Obande W, Stankovic D, Bajpai A, et al. Thermal reshaping as a route for reuse of end-of-life glass fibre-reinforced acrylic composites[J]. Composites Part B:Engineering, 2023, 257: 110662. doi: 10.1016/j.compositesb.2023.110662
    [3] Khan H, Ber R, Neifert S, et al. Carbon fiber-reinforced PEEK spinal implants for primary and metastatic spine tumors: a systematic review on implant complications and radiotherapy benefits[J]. JOURNAL OF NEUROSURGERY-SPINE, 2023, 39(4): 534-547.
    [4] Zhou X, Dong W, Zhao S, et al. Biomimetic construction of 3D needle-punched CF/PEEK composites based on ladybug forewing structure for directional reinforcement[J]. POLYMER COMPOSITES, 2023, 44(10): 6495-6512. doi: 10.1002/pc.27574
    [5] Qiu H, Feng Y, Hong Z, et al. Lightweight multi-layer graded pyramid folded structure based on tucked kirigami for green manufacturing[J]. Composites Science and Technology, 2023, 110383.
    [6] Siddiqui S, Surananai S, Sainath K, et al. Emerging trends in development and application of 3D printed nanocomposite polymers for sustainable environmental solutions[J]. European Polymer Journal, 2023, 196: 112298. doi: 10.1016/j.eurpolymj.2023.112298
    [7] Ge J, Zhang W, Luo M, et al. Multi-objective optimization of thermoplastic CF/PEKK drilling through a hybrid method: An approach towards sustainable manufacturing[J]. Composites Part A:Applied Science and Manufacturing, 2023, 167: 107418. doi: 10.1016/j.compositesa.2022.107418
    [8] Dai G, Zhan L, Ma B, et al. Effect of process parameters on interlaminar properties of thermoplastic composite: Molecular dynamics simulation and experimental verification[J]. POLYMER, 2023, 280.
    [9] Pang X, Yue S, Huang S, Xie J, et al. Effects of ambient humidity and sintering temperature on the tribological and antistatic properties of PEEK and CF/PEEK[J]. FRONTIERS IN MATERIALS, 2023, 10.
    [10] Ramaswamy K, Modi V, Rao P, et al. An investigation of the influence of matrix properties and fibre-matrix interface behaviour on the mechanical performance of carbon fibre-reinforced PEKK and PEEK composites[J]. COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2023, 165.
    [11] Ge J, Catalanotti G, Falzon B, et al. Towards understanding the hole making performance and chip formation mechanism of thermoplastic carbon fibre/polyetherketoneketone composite[J]. Composites Part B:Engineering, 2022, 234: 109752. doi: 10.1016/j.compositesb.2022.109752
    [12] Du Y, Yang T, Liu C. Comparative study on machining performance of conventional and ultrasonic-assisted drilling of carbon fiber-reinforced polyetheretherketone composite[J]. JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2023, 45 (10).
    [13] Liu S, Sun Y, Du Y, et al. Investigating the material removal mechanism and cutting performance in ultrasonic vibration-assisted milling of carbon fibre reinforced thermoplastic[J]. MATERIALS RESEARCH EXPRESS, 2023, 10 (9).
    [14] Hou G, Luo B, Zhang K, et al. Investigation of high temperature effect on CFRP cutting mechanism based on a temperature controlled orthogonal cutting experiment[J]. Composite Structures, 2021, 268: 113967. doi: 10.1016/j.compstruct.2021.113967
    [15] Han L, Zhang J, Liu Y, et al. Finite element investigation on pretreatment temperature-dependent orthogonal cutting of unidirectional CFRP[J]. COMPOSITE STRUCTURES, 2021, 278.
    [16] Li S, Cao Z, Chen R, et al. Strengthening the bonding interfaces of hybrid titanium carbon laminates by bionic micro texture and carbon nanotube pinning[J]. Composites Science and Technology, 2023, 232: 109865. doi: 10.1016/j.compscitech.2022.109865
    [17] Li S, Dai L, Li C, et al. Prediction model of chisel edge thrust force and material damage mechanism for interlaminar-direction drilling of UD-CFRP composite laminates[J]. Composite Structures, 2022, 298: 116023. doi: 10.1016/j.compstruct.2022.116023
    [18] Li S, Teng H, Dai L, et al. Comprehensive prediction model of drilling temperature of UD-CFRP laminates considering the combined action of main cutting edge and chisel edge[J]. Composite Structures, 2023, 313: 116899. doi: 10.1016/j.compstruct.2023.116899
    [19] Song Y, Cao H, Qu D, et al. Impact effect-based dynamics force prediction model of high-speed dry milling UD-CFRP considering size effect[J]. International Journal of Impact Engineering, 2023, 179: 104659. doi: 10.1016/j.ijimpeng.2023.104659
    [20] Song Y, Qu D, Wu B, et al. Composite light ropes model-based dynamics force prediction model of high speed dry milling UD-CF/PEEK considering size effect[J]. Journal of Manufacturing Processes, 2022, 76: 210-222. doi: 10.1016/j.jmapro.2022.01.069
    [21] Ge J, Tan W, Ahmad S, et al. Temperature-dependent cutting physics in orthogonal cutting of carbon fibre reinforced thermoplastic (CFRTP) composite[J]. Composites Part A:Applied Science and Manufacturing, 2024, 176: 107820. doi: 10.1016/j.compositesa.2023.107820
    [22] Qin X, Wu X, Li H, et al. Numerical and experimental investigation of orthogonal cutting of carbon fiber-reinforced polyetheretherketone (CF/PEEK)[J]. The International Journal of Advanced Manufacturing Technology, 2022, (1/2): 119.
    [23] Tan W, Falzon B, Price M, Predicting the crushing behaviour of composite material using high-fidelity finite element modelling[J]. International Journal of Crashworthiness, 2014, 20 (1), 60-77.
    [24] Zhang B, Wang F, Wang Q, et al. Novel fiber fracture criteria for revealing forming mechanisms of burrs and cracking at hole-exit in drilling Carbon Fiber Reinforced Plastic[J]. Journal of Materials Processing Technology, 2021, 289: 116934. doi: 10.1016/j.jmatprotec.2020.116934
    [25] Wang F, Wang X, Jin X, et al. A comparison of cutting mechanisms of the carbon fibre reinforced thermoset and thermoplastic composites by the experimental and computational modelling methods[J]. Journal of Manufacturing Processes, 2022, 79: 895-910. doi: 10.1016/j.jmapro.2022.05.033
    [26] Garcia D, Rodriguez M, Rusinek A, et al. Low temperature effect on impact energy absorption capability of PEEK composites[J]. COMPOSITE STRUCTURES, 2015, 134: 440-449. doi: 10.1016/j.compstruct.2015.08.090
    [27] Chen F, Ou H, Lu B, et al. A constitutive model of polyether-ether-ketone (PEEK)[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 53: 427-433. doi: 10.1016/j.jmbbm.2015.08.037
    [28] Chang B, Wang X, Long Z, et al. Constitutive modeling for the accurate characterization of the tension behavior of PEEK under small strain[J]. Polymer Testing, 2018, 69: 514-521. doi: 10.1016/j.polymertesting.2018.06.003
    [29] Garcia D, Rusinek A, Jankowiak T, et al. Mechanical impact behavior of polyether–ether–ketone (PEEK)[J]. Composite Structures, 2015, 124: 88-99. doi: 10.1016/j.compstruct.2014.12.061
    [30] Liu H, Liu J, Ding Y, et al. A three-dimensional elastic-plastic damage model for predicting the impact behaviour of fibre-reinforced polymer-matrix composites[J]. Composites Part B:Engineering, 2020, 201: 108389. doi: 10.1016/j.compositesb.2020.108389
    [31] Liu H, Liu J, Ding Y, et al. The behaviour of thermoplastic and thermoset carbon-fibre composites subjected to low-velocity and high-velocity impact[J]. Journal of Materials Science, 2020, 55 (33).
    [32] Xu X, Jin X, 3-D finite element modeling of sequential oblique cutting of unidirectional carbon fiber reinforced polymer[J]. Composite Structures, 2021, 256, 113127.
  • 加载中
计量
  • 文章访问数:  58
  • HTML全文浏览量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-16
  • 修回日期:  2024-02-01
  • 录用日期:  2024-02-07
  • 网络出版日期:  2024-03-16

目录

    /

    返回文章
    返回