留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于芳纶pulp优化的碳纤维增强树脂基复合材料的抗损伤性能及残余抗压强度

程飞 蒋宏勇

程飞, 蒋宏勇. 基于芳纶pulp优化的碳纤维增强树脂基复合材料的抗损伤性能及残余抗压强度[J]. 复合材料学报, 2021, 38(11): 3610-3619. doi: 10.13801/j.cnki.fhclxb.20210122.002
引用本文: 程飞, 蒋宏勇. 基于芳纶pulp优化的碳纤维增强树脂基复合材料的抗损伤性能及残余抗压强度[J]. 复合材料学报, 2021, 38(11): 3610-3619. doi: 10.13801/j.cnki.fhclxb.20210122.002
CHENG Fei, JIANG Hongyong. Damage resistance and residual compressive strength of carbon fiber reinforced plastic optimized by aramid pulp[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3610-3619. doi: 10.13801/j.cnki.fhclxb.20210122.002
Citation: CHENG Fei, JIANG Hongyong. Damage resistance and residual compressive strength of carbon fiber reinforced plastic optimized by aramid pulp[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3610-3619. doi: 10.13801/j.cnki.fhclxb.20210122.002

基于芳纶pulp优化的碳纤维增强树脂基复合材料的抗损伤性能及残余抗压强度

doi: 10.13801/j.cnki.fhclxb.20210122.002
基金项目: 西南科技大学科研基金(20zx7141;20zx7101)
详细信息
    通讯作者:

    程飞,副教授,硕士生导师,研究方向为碳纤维复合材料、相变储能材料  E-mail:feicheng@swust.edu.cn

  • 中图分类号: TB332

Damage resistance and residual compressive strength of carbon fiber reinforced plastic optimized by aramid pulp

  • 摘要: 针对树脂基复合材料树脂粘接层脆性大且存在结构缺陷,易发生剥离和分层等突出问题,提出以轻质高强的芳纶pulp(AP)作为增强剂,通过模压成型制得强化的碳纤维增强树脂基复合材料(CFRP),研究不同添加面密度对复合材料抗钻孔、钻孔-冲击二次损抗性能和损伤后的抗压强度的影响。结果表明,6 g/m2 AP使复合材料直接、钻孔以及钻孔-冲击后抗压强度分别增强37.3%、41.0%和41.8%。分析认为:AP改善了树脂脆性,消除层间富树脂区域,提升层间断裂韧性,抑制了裂纹生长;同时AP以纤维桥连形式贯穿于树脂层和碳纤维层,不仅改善了树脂与碳纤维粘接界面的缺陷,也构建准Z方向的纤维排布,避免裂纹向单层界面扩展而导致结构分层,从而实现结构强化。

     

  • 图  1  不同面密度的AP增强后的CFRP复合材料经过钻孔损伤后的压缩性能

    Figure  1.  Compressive load-displacement curves and average load of CFRP with different interface densities of AP after drilled

    图  2  不同面密度的AP增强的CFRP复合材料经过钻孔损伤后的抗压强度

    Figure  2.  Compressive strength of CFRP with different interface densities of AP after drilled

    图  3  不同面密度的AP增强的CFRP复合材料试样压缩破坏后Y-Z平面内不同区域的断层图像

    Figure  3.  Fracture images of UD-CFRP with different interface densities of AP in Y-Z plain after compression ((a),(a1) 0 g/m2; (b),(b1) 2 g/m2; (c),(c1) 4 g/m2; (d),(d1) 6 g/m2; (e),(e1) 8 g/m2)

    图  4  两种面密度的AP增强的单向CFRP复合材料破坏后不同平面内的断层图像

    Figure  4.  Fracture images of UD-CFRP without AP and 6 g/m2 AP in different plains after compression ((a1, a2, a3, a4, a5, a6) 0 g/m2; (b1, b2, b3, b4, b5, b6) 6 g/m2 )

    图  5  不同面密度AP增强的单向CFRP(UD-CFRPs)复合材料经过钻孔-冲击二次损伤后的压缩性能

    Figure  5.  Compressive load-displacement curves and average load of unidirectional CFRP (UD-CFRPs) with different interface densities of AP after drill and impact

    图  6  不同面密度AP增强的单向CFRP复合材料经钻孔-冲击二次损伤后的抗压强度

    Figure  6.  Compressive strength of UD-CFRPs with different interface densities of AP after drill and impact

    图  7  不同面密度的AP增强的CFRP复合材料试样压缩破坏后X-Y平面内不同区域的断层图像

    Figure  7.  Compressive damage images of UD-CFRP with different interface densities of AP in X-Y plain after drill and impact ((a) 0 g/m2; (b) 2 g/m2; (c) 4 g/m2; (d) 6 g/m2; (e) 8 g/m2)

    图  8  不同面密度的AP增强的CFRP复合材料试样压缩破坏后Y-Z平面内不同区域的断层图像

    Figure  8.  Compressive damage images of UD-CFRP with different interface densities of AP in Y-Z plain after drill and impact ((a) 0 g/m2; (b) 2 g/m2; (c) 4 g/m2; (d) 6 g/m2; (e) 8 g/m2)

    图  9  AP增强的CFRP复合材料的增强原理示意图

    Figure  9.  Toughening mechanism schematic of UD-CFRP with different interface densities of AP.

    SAFE—Short aramid fiber and epoxy mixtures

    表  1  不同面密度的AP增强的单向碳纤维增强树脂基复合材料(CFRP)所设置的实验相关参数

    Table  1.   Relevant experiment data of carbon fiber reinforced plastics (CFRP) with different interface densities of AP

    SampleAP/
    wt%
    AP-epoxy/
    g
    Epoxy in
    AP-epoxy/g
    Hardener/
    g
    AP-epoxy
    layer /plies
    CF fabric/
    plies
    AP interface
    density/(g·m−2)
    CF/EP 0 0 12.500 2.500 9 10 0
    2AP-CF/EP 1 12.5 12.375 2.475 9 10 2
    4AP-CF/EP 2 12.5 12.250 2.450 9 10 4
    6AP-CF/EP 3 12.5 12.125 2.425 9 10 6
    8AP-CF/EP 4 12.5 12.000 2.400 9 10 8
    下载: 导出CSV

    表  2  不同面密度的AP增强的CFRP复合材料经过钻孔损伤后的压缩强度性能

    Table  2.   Compressive strength of CFRP with different interface densities of AP after drilled

    SampleCompression test
    without drilling
    Compression test
    after drilling
    Reduction to undrilled
    compression test
    Compressive
    strength/
    MPa
    Standard
    deviation/
    MPa
    Pmax/
    N
    Standard
    deviation/
    N
    Compressive
    strength/
    MPa
    Standard
    deviation/
    MPa
    Compressive
    strength/
    MPa
    Decrease /
    %
    CF/EP 198.63 22.53 8 769.11 563.04 159.09 11.43 39.54 19.9
    2AP-CF/EP 215.21 24.71 10 472.70 1 040.72 181.24 13.92 33.97 15.8
    4AP-CF/EP 258.93 28.65 11 970.00 411.94 215.87 21.83 43.06 16.6
    6AP-CF/EP 272.85 26.43 12 984.25 778.25 224.37 18.65 48.48 17.8
    8AP-CF/EP 233.33 28.31 10 900.30 1 177.07 188.70 15.18 44.63 19.1
    Note: Pmax—Maximum load.
    下载: 导出CSV

    表  3  不同面密度的AP增强的CFRP复合材料经过钻孔-冲击损伤后的压缩强度性能

    Table  3.   Compressive strength of CFRP with different interface densities of AP after drilled and impact

    SamplePmax/NStandard deviation/NCompressive strength/MPaStandard deviation/MPaReduction to drilled strength/MPaDecrease/%
    CF/EP 7 238.36 1 216.09 132.04 29.21 27.05 17.0
    2AP-CF/EP 9 767.84 541.15 168.86 16.27 12.38 6.8
    4AP-CF/EP 10 222.60 1 164.90 179.43 31.28 36.44 16.9
    6AP-CF/EP 11 258.01 562.54 187.17 16.19 37.20 16.6
    8AP-CF/EP 9 937.03 716.39 160.52 21.44 28.18 14.9
    下载: 导出CSV
  • [1] 鲍学淳, 程礼, 陈煊, 等. 碳纤维树脂基复合材料三点弯曲超高周疲劳实验研究[J]. 机械强度, 2019, 41(4):858-863.

    BAO X C, CHENG L, CHEN X, et al. Experimental study on three-point bending ultra-high cycle fatigue of carbon fiber resin matrix composites[J]. Mechanical Strength,2019,41(4):858-863(in Chinese).
    [2] 陈鑫, 马士东, 刘升辉. 基于ABAQUS碳纤维树脂基复合材料抗冲击性能研究[J]. 科技风, 2019(2):194-195.

    CHEN X, MA S D, LIU S H. Research on impact resistance of carbon fiber resin matrix composites based on ABAQUS[J]. KEJIFENG,2019(2):194-195(in Chinese).
    [3] 王振, 宋凯, 朱国华, 等. 单向碳纤维复合材料锥管轴向吸能特性研究[J]. 振动与冲击, 2018, 37(7):172-178.

    WANG Z, SONG K, ZHU G H, et al. Axial energy absorption characteristics of unidirectional carbon-fiber composite cone tubes[J]. Journal of Vibration and Shock,2018,37(7):172-178(in Chinese).
    [4] 徐林, 孙文磊. 风力发电机复合材料叶片结构特性分析[J]. 可再生能源, 2013, 31(3):56-59.

    XU L, SUN W L. Structural characteristics analysis of wind turbine composite material blade[J]. Renewable Energy Resource,2013,31(3):56-59(in Chinese).
    [5] 包建文, 蒋诗才, 张代军. 航空碳纤维树脂基复合材料的发展现状和趋势[J]. 科技导报, 2018, 36(9):52-63.

    BAO J W, JIANG S C, ZHANG D J. Current status and trends of aeronautical resin matrix composites reinforced by carbon fiber[J]. Science & Technology Review,2018,36(9):52-63(in Chinese).
    [6] 黄硕, 王亮, 陈超. 我国碳纤维复合材料在汽车上的应用趋势和建议[J]. 中国材料科技与设备, 2015, 3:59-62.

    HUANG S, WANG L, CHEN C. Application and prospect of carbon fiber composite material in the automotive[J]. Materials Science Technology & Equipment,2015,3:59-62(in Chinese).
    [7] 牛峰, 王建平, 马春草, 等. 碳纤维复合材料在舰艇显控台上的应用[J]. 舰船科学技术, 2018, 41(6):85-88.

    NIU F, WANG J P, MA C C, et al. The application of carbon fiber composite material in naval vessel console[J]. Ship Science and Technology,2018,41(6):85-88(in Chinese).
    [8] 王晨阳. 碳纤维树脂基复合材料在交通装备领域的应用[J]. 中国战略新兴产业, 2019(4):189-191.

    WANG C Y. Application of carbon fiber resinbased composite materials in the field of transportation equipment[J]. China Strategic Emerging Industry,2019(4):189-191(in Chinese).
    [9] 罗永康, 李炜, 胡红, 等. 碳纤维复合材料在风力发电机叶片中的应用[J]. 电网与清洁能源, 2008, 24(11):53-57. doi: 10.3969/j.issn.1674-3814.2008.11.012

    LUO Y K, LI W, HU H, et al. Application of carbon fiber composite materials in wind turbine blades[J]. Power System and Clean Energy,2008,24(11):53-57(in Chinese). doi: 10.3969/j.issn.1674-3814.2008.11.012
    [10] 杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1):1-10. doi: 10.3321/j.issn:1000-3851.2008.01.001

    DU S Y, GUAN Z D. Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica,2008,25(1):1-10(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.01.001
    [11] ZHAI Y J, WANG Z C, HUANG W, et al. Improved mechanical properties of epoxy reinforced by low content nanodiamond powder[J]. Materials Science & Engineering A,2011,528(24):7295-7300.
    [12] YUAN B Y, HU Y S, CHENG F, et al. Flexure and flexure-after-impact properties of carbon fibre composites interleaved with ultra-thin non-woven aramid fibre veils[J]. Composites Part A-Applied Science and Manufacturing,2020,131:105831.
    [13] GARCIA-RODRIGUEZ S M, COSTA J, SINGERY V, et al. The effect interleaving has on thin-ply non-crimp fabric laminate impact response: X-ray tomography investigation[J]. Composites Part A: Appllied Science Manufacture,2018,107:409-420. doi: 10.1016/j.compositesa.2018.01.023
    [14] NASH N H, YOUNG T M, MCGRAIL P T, et al. Inclusion of a thermoplastic phase to improve impact and post-impact performances of carbon fibre reinforced thermosetting composites—A review[J]. Material and Design,2015,85:582-597. doi: 10.1016/j.matdes.2015.07.001
    [15] YUAN B Y, TAN B, HU Y S, et al. Improving impact resistance and residual compressive strength of carbon fibre composites using un-bonded non-woven short aramid fibre veil[J]. Composites Part A: Applied Science and Manufacturing,2019,121:439-448. doi: 10.1016/j.compositesa.2019.04.006
    [16] 林智育, 许希武. 复合材料层板低速冲击后剩余压缩强度[J]. 复合材料学报, 2008, 25(1):140-146. doi: 10.3321/j.issn:1000-3851.2008.01.024

    LIN Z Y, XU X W. Residual compressive strength of composite laminates after low-velocity impact[J]. Acta Materiae Compositae Sinica,2008,25(1):140-146(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.01.024
    [17] 管清宇, 严文军, 吴光辉, 等. 碳纤维/环氧树脂复合材料层压板冲击凹坑的回弹特性[J]. 复合材料学报, 2020, 37(2):284-292.

    GUAN Q Y, YAN W J, WU G H, et al. Impact dent relaxation characteristic of carbon fiber/epoxy resin composite laminate[J]. Acta Materiae Compositae Sinica,2020,37(2):284-292(in Chinese).
    [18] 贾晓龙, 还献华, 齐鹏飞, 等. 碳纤维树脂基复合材料的高性能化[J]. 科学通报, 2018, 63(34):3555-3569. doi: 10.1360/N972018-00842

    JIA X L, HUAN X H, QI P F, et al. Performance improvement in carbon fiber reinforced polymer-based composites[J]. Chinese Science Bulletin,2018,63(34):3555-3569(in Chinese). doi: 10.1360/N972018-00842
    [19] YAO X, GAO X, JIANG J, et al. Comparison of carbon nanotubes and graphene oxide coated carbon fiber for improving the interfacial properties of carbon fiber/epoxy composites[J]. Composites Part B : Engineering,2018,132:170-7. doi: 10.1016/j.compositesb.2017.09.012
    [20] OU Y, GONZALEZ C, VILATELA J J. Interlaminar toughening in structural carbon fiber/epoxy composites interleaved with carbon nanotube veils[J]. Composites Part A: Applied Science and Manufacturing,2019,124:105477. doi: 10.1016/j.compositesa.2019.105477
    [21] ZHANG J, LIN T, WANG X. Electrospun nanofibre toughened carbon/epoxy composites: Effects of polyetherketone cardo (PEK-C) nanofibre diameter and interlayer thickness[J]. Composites Science Technology,2010,70:1660-6. doi: 10.1016/j.compscitech.2010.06.019
    [22] YANG H H. Aromatic high strength fibres[M]. New York: Wiley-Inter science, 1989
    [23] SOHN M S, HU X Z. Mode Ⅱ delamination toughness of carbon-fibre/epoxy composites with chopped Kevlar fibre reinforcement[J]. Composites Science and technology,1994,52(3):439-448. doi: 10.1016/0266-3538(94)90179-1
    [24] YASAEE M, BOND I P, TRASK R S, et al. Mode Ⅱ interfacial toughening through discontinuous interleaves for damage suppression and control[J]. Composites Part A: Applied Science and Manufacturing,2012,43:121-128. doi: 10.1016/j.compositesa.2011.09.026
    [25] YUAN B Y, WEE E P J, CHOENG J L K, et al. Quasi-Z-directional toughening from un-bonded non-woven veil at interface in laminar composites[J]. Composites Communications,2017,6:20-24. doi: 10.1016/j.coco.2017.07.007
    [26] CHENG F, HU Y S, YUAN B Y, et al. Transverse and longitudinal flexural properties of unidirectional carbon fiber composites interleaved with hierarchical Aramid pulp micro/nano-fibers[J]. Composites Part B: Engineering,2020,188:107897. doi: 10.1016/j.compositesb.2020.107897
    [27] HU Y S, CHENG F, YUAN B Y, et al. Effect of aramid pulp on low temperature flexural properties of carbon fibre reinforced plastics[J]. Composites Science and Technology,2020,192:108095. doi: 10.1016/j.compscitech.2020.108095
    [28] CALLISTER W D and RETHWISCH D G. Materials science and engineering[M]. New York: John wiley & sons, 2011.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  1015
  • HTML全文浏览量:  442
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-03
  • 录用日期:  2021-01-15
  • 网络出版日期:  2021-01-22
  • 刊出日期:  2021-11-01

目录

    /

    返回文章
    返回