留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水泥基材料中倾斜端钩型钢纤维拔出力学性能计算模型

王照耀 毕继红 赵云 霍琳颖

王照耀, 毕继红, 赵云, 等. 水泥基材料中倾斜端钩型钢纤维拔出力学性能计算模型[J]. 复合材料学报, 2021, 38(12): 4379-4392. doi: 10.13801/j.cnki.fhclxb.20210207.003
引用本文: 王照耀, 毕继红, 赵云, 等. 水泥基材料中倾斜端钩型钢纤维拔出力学性能计算模型[J]. 复合材料学报, 2021, 38(12): 4379-4392. doi: 10.13801/j.cnki.fhclxb.20210207.003
WANG Zhaoyao, BI Jihong, ZHAO Yun, et al. Calculation model for pullout behavior of inclined hooked-end steel fiber in cement-based materials[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4379-4392. doi: 10.13801/j.cnki.fhclxb.20210207.003
Citation: WANG Zhaoyao, BI Jihong, ZHAO Yun, et al. Calculation model for pullout behavior of inclined hooked-end steel fiber in cement-based materials[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4379-4392. doi: 10.13801/j.cnki.fhclxb.20210207.003

水泥基材料中倾斜端钩型钢纤维拔出力学性能计算模型

doi: 10.13801/j.cnki.fhclxb.20210207.003
基金项目: 国家自然科学基金(51227006)
详细信息
    通讯作者:

    毕继红,博士,教授,博士生导师,研究方向为钢纤维混凝土材料力学性能 E-mail:jihong_bi@163.com

  • 中图分类号: TU528.572

Calculation model for pullout behavior of inclined hooked-end steel fiber in cement-based materials

  • 摘要: 端钩型钢纤维是结构工程中应用最广泛的钢纤维品类之一,单根钢纤维拔出力学性能对于确定钢纤维混凝土的受拉本构及受拉韧性具有重要意义。为了得到能够有效预测倾斜端钩型钢纤维拔出荷载-端部位移曲线的理论模型,首先将倾斜端钩型钢纤维拔出过程分为完全黏结、脱黏和拔出滑移阶段三种受力状态,考虑不同拔出阶段及基体孔道损伤,建立了钢纤维黏结应力与纤维端部位移之间的关系,同时考虑钢纤维塑性变形、附加摩擦力及纤维拔出角度导致的基体剥落和挤压摩擦效应,建立了一种可以预测倾斜端钩型钢纤维拔出全过程的理论计算模型,在此基础上提出形式简单的简化模型,选取已有试验数据对提出的计算模型进行验证,结果表明:本文提出的两种模型均能够有效预测端钩型钢纤维拔出全过程,具有较高的计算精度且变异系数小,为进一步分析钢纤维对水泥基材料受拉性能的增强作用提供了理论依据。

     

  • 图  1  倾斜端钩型钢纤维拔出三个阶段

    Figure  1.  Three stages of pullout behavior of inclined hooked-end steel fiber

    a—Debonding length of steel fiber; P—Pullout force

    图  2  端钩型钢纤维几何尺寸

    Figure  2.  Geometric dimensions of hooked-end steel fiber

    α—Hook angle; l1 and l2—Segment length of the end-hook; L—Embedded length of steel fiber; df—Diameter of steel fiber

    图  3  钢纤维黏结应力-端部位移关系

    Figure  3.  Relationship between fiber bond stress and end displacement

    δ1, δ2—Maximum end-displacement in the completely bonding stage and debonding stage, respectively; τmax—Bond shear strength; τs—Bond shear stress corresponding to the end of the debongding stage; gf—Interfacial shear fracture energy

    图  4  表示孔道损伤的系数κs与端部位移δ关系曲线

    Figure  4.  Relationship curves between the coefficient κs indicating the damage of the hole and the end displacement δ

    图  5  钢纤维微单元受力分析

    Figure  5.  Stress analysis of steel fiber segment

    τ—Bond shear stress; dx—Infinitesimal length; σf—Normal stress of steel fiber; dσf—Increment of the normal stress

    图  6  钢纤维锚固端截面受力分析

    Figure  6.  Stress analysis of steel fiber anchorage end

    σm—Normal stress of the matrix; Dm—Diameter of the influenced section in matrix; x—Distance from the end of fiber

    图  7  钢纤维端钩部分受力分析及截面应力分布

    Figure  7.  Mechanical analysis and stress distribution of hooked-end of steel fiber

    T1, T2 and T1'—Tensile force for the end-hook; f1 and f2—Bond force of the end-hook; Tp—Tensile force required for plastic deformation; β—Angle of the normal force; N1 and N2—Normal force; rf—Radius of steel fiber; Ap—Area of the plastic region; y—Distance between the neutral axis and the plastic zone centroid; γ—Angle between the plastic zone and the vertical axis

    图  8  钢纤维产生塑性变形时拉力-弯矩关系曲线

    Figure  8.  Tensile force-moment curves corresponding to the plastic deformation of steel fiber

    图  9  附加摩擦力与钢纤维端部位移关系

    Figure  9.  Relationship between additional friction and end displacement of steel fiber

    图  10  基体剥落示意图

    Figure  10.  Diagram of matrix spalling

    θ—Pullout orientation angle; Afta and Aftb—Area of the cracking interface; lft—Spalling length; Ffn—Compressive force; Ffb—Spalling force

    图  11  基体剥落长度与加载角度、荷载之间关系

    Figure  11.  Relationship between the spalling length of matrix, inclination and load

    图  12  基体剥落长度试验值与预测值对比

    Figure  12.  Comparison between experimental and predicted values of spalling length of matrix

    图  13  计算流程图

    Figure  13.  Calculation flow chart

    图  14  钢纤维拔出最大黏结应力与基体抗压强度关系

    Figure  14.  Relationship between maximum bond stress during steel fiber pullout and compressive strength of matrix

    图  15  钢纤维拔出荷载-位移曲线简化模型

    Figure  15.  Simplified model of steel fiber pullout load-end displacement curve

    A1-A6—Six key-points of the simplified model; Le—Effective embedded length of steel fiber

    图  16  Soetens等[12]试验荷载-端部位移曲线对比

    Figure  16.  Comparison of load-end displacement curves with test data of Soetens et al[12]

    图  17  Breitenbücher等[29]的试验荷载-端部位移曲线对比

    Figure  17.  Comparison of load-end displacement curves with test data of Breitenbücher et al[29]

    表  1  用于预测端钩型钢纤维拔出力学性能的参数取值

    Table  1.   Parameters used to predict the pullout behavior of hooked-end steel fiber

    ParameterValue
    Elastic modulus of matrix Em/MPa 3.2×104
    Elastic modulus of fiber Ef/MPa 2×105
    Diameter of matrix Dm 10df
    Fiber Poisson's ratio vf 0.3
    Matrix Poisson's ratio vm 0.2
    Curvature radius of hooked fiber ρ 2df
    End hook angle α/(°) 50
    下载: 导出CSV

    表  2  钢纤维拔出峰值荷载预测值与试验值对比

    Table  2.   Comparison between predicted and experimental values of steel fiber pullout peak load

    ReferenceSpecimenPpre/NPex/NPpre/Pex
    Soetens et al[12] HHH-80-30-00 725.91 736.63 0.98
    HHH-80-30-15 810.56 818.18 0.99
    HHH-80-30-30 838.71 885.96 1.07
    HHH-80-30-45 796.03 869.45 1.08
    Breitenbücher et al[29] BP-80/60-00 637.51 633.88 1.01
    BP-80/60-15 684.43 670.84 1.02
    BP-80/60-30 739.01 744.76 0.99
    BP-80/60-45 753.37 768.79 0.97
    BP-80/60-60 675.96 615.40 1.10
    μ 1.02
    COV 0.05
    Notes: Ppre and Pex—Predicted and the experimental value of the peak load, respectively; μ—Ratio of Ppre and Pex; COV—Coefficient of variation; “HHH” in notation system of the first series of tests represents the high strength matrix and hooked-end fiber with high carbon content. Figures in the second, third and fourth symbol represent fiber diameter (mm/100), embedded length (mm) and pullout inclination (°), respectively. For example, the notation of “HHH-80-30-30”—Pullout specimen with high strength matrix, 0.8 mm of fiber diameter, 30 mm of embedded length and 30° of pullout inclination. “BP” in notation system of the second series of tests represents a type of hooked-end fiber with tensile yield strength 2600 MPa. Figures in the second, third and fourth symbol represent fiber aspect ratio (-), fiber length (mm) and pullout inclination (°), respectively. For example, the notation of “BP-80/60-15”—Pullout specimen with 80 of fiber aspect ratio, 60 mm of fiber length and 15° of pullout inclination.
    下载: 导出CSV
  • [1] 韩嵘, 赵顺波, 曲福来. 钢纤维混凝土抗拉性能试验研究[J]. 土木工程学报, 2006, 39(11):63-67. doi: 10.3321/j.issn:1000-131X.2006.11.010

    HAN Rong, ZHAO Shunbo, QU Fulai. Experimental study on the tensile performance of steel flber reinforced concrete[J]. China Civil Engineering Journal,2006,39(11):63-67(in Chinese). doi: 10.3321/j.issn:1000-131X.2006.11.010
    [2] 卿龙邦, 聂雅彤, 慕儒. 钢纤维对水泥基复合材料抗起裂特性的影响[J]. 复合材料学报, 2017, 34(8):1862-1869.

    QING Longbang, NIE Yatong, MU Ru. Influence of steel fibres on the resistance to crack initiation of cementitious composites[J]. Acta Materiae Compositae Sinica,2017,34(8):1862-1869(in Chinese).
    [3] 梁兴文, 胡翱翔, 于婧, 等. 钢纤维对超高性能混凝土抗弯力学性能的影响[J]. 复合材料学报, 2018, 35(3):722-731.

    LIANG Xingwen, HU Aoxiang, YU Jing, et al. Effect of steel fibers on the flexural response of ultra-high performance concrete[J]. Acta Materiae Compositae Sinica,2018,35(3):722-731(in Chinese).
    [4] NAAMAN A E. Engineered steel fibers with optimal properties for reinforcement of cement composites[J]. Journal of Advanced Concrete Technology,2003,1(3):241-252. doi: 10.3151/jact.1.241
    [5] 秦鸿根, 刘斯凤, 孙伟, 等. 钢纤维掺量和类型对混凝土性能的影响[J]. 建筑材料学报, 2003(4):364-368. doi: 10.3969/j.issn.1007-9629.2003.04.005

    QIN Honggen, LIU Sifeng, SUN Wei, et al. Effect of types and volume percentage of steel fiber on properties of concrete[J]. Journal of Building Materials,2003(4):364-368(in Chinese). doi: 10.3969/j.issn.1007-9629.2003.04.005
    [6] 许碧莞, 施惠生, JU Jiannwen Woody. 水泥基体中弓形钢纤维拔出耗能模型[J]. 同济大学学报(自然科学版), 2010, 38(8):1194-1199. doi: 10.3969/j.issn.0253-374x.2010.08.017

    XU Biwan, SHI Huisheng, JU Jiannwen Woody. Modeling pullout energy of hooked end steel fiber in cementitious matrices[J]. Journal of Tongji University (Natural Science),2010,38(8):1194-1199(in Chinese). doi: 10.3969/j.issn.0253-374x.2010.08.017
    [7] 朱德举, 李向阳, 史才军, 等. 水泥基体中仿生钢纤维的拔出试验[J]. 湖南大学学报(自然科学版), 2018, 45(1):84-89.

    ZHU Deju, LI Xiangyang, SHI Caijun, et al. Pullout test of bio-inspired steel fiber from cementitious matrix[J]. Journal of Hunan University (Natural Sciences),2018,45(1):84-89(in Chinese).
    [8] ROBINS P, AUSTIN S, JONES P. Pull-out behaviour of hooked steel fibres[J]. Materials and Structures,2002,35:434-442. doi: 10.1007/BF02483148
    [9] NAAMAN A E, NAMUR G G, ALWAN J M, et al. Fiber pullout and bond slip. I: Analytical study[J]. Journal of Structural Engineering,1991,117:2769-2790. doi: 10.1061/(ASCE)0733-9445(1991)117:9(2769)
    [10] SHANNAG M J, BRINCKER R, HANSEN W. Pullout behavior of steel fibers from cement-based composites[J]. Cement and Concrete Research,1997,27(6):925-936. doi: 10.1016/S0008-8846(97)00061-6
    [11] GHODDOUSI P, AHMADI R, SHARIFI M. Fiber pullout model for aligned hooked-end steel fiber[J]. Canadian Journal of Civil Engineering,2010,37:1179-1188. doi: 10.1139/L10-053
    [12] SOETENS T, VAN-GYSEL A, MATTHYS S, et al. A semi-analytical model to predict the pull-out behaviour of inclined hooked-end steel fibres[J]. Construction and Building Materials,2013,43(2):253-265.
    [13] LARANJEIRA F, MOLINS C, AGUADO A. Predicting the pullout response of inclined hooked steel fibers[J]. Cement and Concrete Research,2010(40):1471-1487.
    [14] KULLAA J. Dimensional analysis of bond modulus in fiber pullout[J]. Journal of Structural Engineering,1996,122(7):783-787. doi: 10.1061/(ASCE)0733-9445(1996)122:7(783)
    [15] GAO Y, MAI Y, COTTERELL B. Fracture of fiber-reinforced materials[J]. Journal of Applied Mathematics and Physics,1988,39(4):550-572.
    [16] YANG S, HU X, LENG K, et al. Correlation between cohesive crack-tip local fracture energy and peak load in mortar beams[J]. Journal of Materials in Civil Engineering,2014,26(10):1-8.
    [17] CHANVILLARD G. Modeling the pullout of wire-drawn steel fibers[J]. Cement and Concrete Research,1999,29(7):1027-1037. doi: 10.1016/S0008-8846(99)00081-2
    [18] GEORGIADIS-STEFANIDI K, MISTAKIDIS E, PANTOUSA D, et al. Numerical modelling of the pull-out of hooked steel fibers form high-strength cementitious matrix, supplemented by experimental results[J]. Construction and Building Materials,2010,24:2489-2506. doi: 10.1016/j.conbuildmat.2010.06.007
    [19] CAILLEUX E, CUTARD T, BERNHART G. Pullout of steel fibers from a refractory castable: Experiment and modelling[J]. Mechanics of Materials,2005,37(4):427-445. doi: 10.1016/j.mechmat.2004.02.001
    [20] LEUNG C K Y, SHAPIRO N. Optimal steel fiber strength for reinforcement of cementitious materials[J]. Journal of Materials in Civil Engineering,1999,11(2):116-123. doi: 10.1061/(ASCE)0899-1561(1999)11:2(116)
    [21] LI V C, WANG Y, BACKER S. Effect of inclining angle, bundling and surface treatment on synthetic fibre pull-out from a cement matrix[J]. Composites,1990,21(2):132-140. doi: 10.1016/0010-4361(90)90005-H
    [22] XU B W, JU J W, SHI H S. Progressive micromechanical modeling for pullout energy of hooked-end steel fiber in cement-based composites[J]. International Journal of Damage Mechanics,2011,20(6):922-938. doi: 10.1177/1056789510385260
    [23] PARK J K, NGO T T, KIM D J. Interfacial bond characteristics of steel fibers embedded in cementitious composites at high rates[J]. Cement and Concrete Research,2019,123:1-17.
    [24] OUYANG C, PACIOS A, SHAH S P. Pullout of inclined fibers from cementitious matrix[J]. Journal of Engineering Mechanics,1994,120(12):2641-2659. doi: 10.1061/(ASCE)0733-9399(1994)120:12(2641)
    [25] ZHANG C, SHI C, WU Z, et al. Numerical and analytical modeling of fiber-matrix bond behaviors of high perfor-mance cement composite[J]. Cement and Concrete Research,2019,125:1-14.
    [26] FENG J, SUN W, WANG X, et al. Mechanical analyses of hooked fiber pullout performance in ultra-high-perfor-mance concrete[J]. Construction and Building Materials,2014,69:403-410. doi: 10.1016/j.conbuildmat.2014.07.049
    [27] ABU-LEBDEH T, HAMOUSH S, HEARD W, et al. Effect of matrix strength on pullout behavior of steel fiber reinforced very-high strength concrete composites[J]. Construction and Building Materials,2011,25(1):39-46. doi: 10.1016/j.conbuildmat.2010.06.059
    [28] GENG Y P, LEUNG C K Y. Damage-based modeling of fiber pullout under variable compressive stress[J]. Journal of Engineering Mechanics,1997,123(4):342-349. doi: 10.1061/(ASCE)0733-9399(1997)123:4(342)
    [29] BREITENBUECHER R, MESCHKE G, SONG F, et al. Experimental, analytical and numerical analysis of the pullout behaviour of steel fibres considering different fibre types, inclinations and concrete strengths[J]. Structural Concrete,2014,15(2):126-135. doi: 10.1002/suco.201300058
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  1065
  • HTML全文浏览量:  394
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-10
  • 录用日期:  2021-01-25
  • 网络出版日期:  2021-02-07
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回