留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电化学储能及传感用细菌纤维素及其复合材料的研究进展

王静 李彩云 万怡灶

王静, 李彩云, 万怡灶. 电化学储能及传感用细菌纤维素及其复合材料的研究进展[J]. 复合材料学报, 2024, 41(6): 2753-2768. doi: 10.13801/j.cnki.fhclxb.20240003.006
引用本文: 王静, 李彩云, 万怡灶. 电化学储能及传感用细菌纤维素及其复合材料的研究进展[J]. 复合材料学报, 2024, 41(6): 2753-2768. doi: 10.13801/j.cnki.fhclxb.20240003.006
WANG Jing, LI Caiyun, WAN Yizao. Research progress of bacterial cellulose and its composites for electrochemical energy storage and sensing[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 2753-2768. doi: 10.13801/j.cnki.fhclxb.20240003.006
Citation: WANG Jing, LI Caiyun, WAN Yizao. Research progress of bacterial cellulose and its composites for electrochemical energy storage and sensing[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 2753-2768. doi: 10.13801/j.cnki.fhclxb.20240003.006

电化学储能及传感用细菌纤维素及其复合材料的研究进展

doi: 10.13801/j.cnki.fhclxb.20240003.006
详细信息
    通讯作者:

    王静,博士,副研究员,博士生导师,研究方向为先进纺织复合材料、生物材料 E-mail: jingwang@tiangong.edu.cn

    万怡灶,博士,教授,博士生导师,研究方向为生物医用材料 E-mail: yzwan@ecjtu.edu.cn

  • 中图分类号: TQ352.4;TB332

Research progress of bacterial cellulose and its composites for electrochemical energy storage and sensing

  • 摘要: 细菌纤维素(Bacterial cellulose,BC)来源丰富,是一种绿色环保的可再生材料。BC具有优异的物理化学特性,被认为是具有多样性应用潜力的生物聚合物材料,随着能源和生态环境的持续恶化,对于开发先进储能技术亟待实现,BC在电化学储能、传感及能源转换领域展现出广阔的应用前景,受到诸多关注。本文对BC做了简要介绍,以BC及其复合材料在电化学储能及传感领域的种类、不同处理及改性手段对BC结构与性能的影响为线索,系统地对BC在电化学储能及传感领域的应用进展进行了概述,对其在新型电子器件及能源转换领域的发展也有所涉及,最后对BC在电化学储能及传感材料的研究进展及发展方向进行了总结和展望。

     

  • 图  1  细菌纤维素(BC)主要处理方法及改性手段

    Figure  1.  Main processing methods and modification methods of bacterial cellulose (BC)

    图  2  BC在电化学储能及传感领域的不同应用

    Figure  2.  Different applications of BC in the field of electrochemical energy storage and sensing

    图  3  柔性聚吲哚/碳纳米管/BC (PIn/CNT/BC)纳米纤维非织造布电极的制备工艺示意图[63]

    Figure  3.  Schematic diagram of the preparation process of polyindole/carbon nanotube/BC (PIn/CNT/BC) nanofiber nonwoven electrode[63]

    图  4  BC衍生碳纳米纤维(CNF)气凝胶的制备工艺示意图[67]

    uBC—

    Figure  4.  Preparation process diagram of BC-derived carbonized nanofiber (CNF) aerogel[67]

    图  5  碳纳米纤维(CN)-BC合成示意图及宏观展现照片:(a) 初始凝胶状BC膜;(b)干燥的BC@SiO2膜;(c)碳化的BC@SiO2[70]

    Figure  5.  Carbon nanofiber (CN)-BC synthesis schematic diagram and macroscopic display photos: (a) Initial gel-like BC film; (b) Dry BC@SiO2 film; (c) Carbonized BC@SiO2 film[70]

    图  6  聚乙烯醇/海藻酸钠/BC/羧基化改性碳纳米管(PVA/SA/BC/MCC)水凝胶作为应变传感器 :(a)拉伸前后组装成压阻应变传感器的水凝胶示意图;(b)拉伸应变范围为10%至80%的相对电阻变化(ΔR/R0)(插图显示了拉伸过程中的压阻应变传感器的不同状态);(c)在60%和150%应变下重复拉伸/释放循环的传感器的相对电阻变化[75]

    Figure  6.  Polyvinyl alcohol/Sodium alginate/BC/Carboxylated modified carbon nanotubes (PVA/SA/BC/MCC) hydrogels as strain sensors: (a) Schematic of hydrogels assembled into piezoresistive strain sensors before and after stretching; (b) Relative resistance changes (ΔR/R0) within the stretching strain range of 10% to 80% (Illustrations showing different states of the piezoresistive strain sensors during stretching); (c) Relative resistance changes of the sensors during repeated stretching/releasing cycles at 60% and 150% strain[75]

  • [1] ARSERIM-UÇAR D K, KOREL F, LIU L, et al. Characterization of bacterial cellulose nanocrystals: Effect of acid treatments and neutralization[J]. Food Chemistry, 2021, 336: 127597. doi: 10.1016/j.foodchem.2020.127597
    [2] DE AMORIM J D P, DE SOUZA K C, DUARTE C R, et al. Plant and bacterial nanocellulose: Production, properties and applications in medicine, food, cosmetics, electronics and engineering: A review[J]. Environmental Chemistry Letters, 2020, 18(3): 851-869. doi: 10.1007/s10311-020-00989-9
    [3] HUANG J, ZHAO M, HAO Y, et al. Recent advances in functional bacterial cellulose for wearable physical sensing applications[J]. Advanced Materials Technologies, 2021, 7(1): 2100617.
    [4] DE ASSIS S C, MORGADO D L, SCHEIDT D T, et al. Review of bacterial nanocellulose-based electrochemical biosensors: Functionalization, challenges, and future perspectives[J]. Biosensors, 2023, 13(1): 142. doi: 10.3390/bios13010142
    [5] 张艳, 孙怡然, 于飞, 等. 细菌纤维素及其复合材料在环境领域应用的研究进展[J]. 复合材料学报, 2021, 38(8): 2418-2427.

    ZHANG Yan, SUN Yiran, YU Fei, et al. Research progress on the application of bacterial cellulose and its composites in environmental field[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2418-2427(in Chinese).
    [6] 陈少杰, 徐海兵, 张雪辉, 等. 复合材料结构超级电容器碳纤维电极的制备与改性方法研究进展[J]. 复合材料学报, 2023, 40(11): 6010-6028.

    CHEN Shaojie, XU Haibing, ZHANG Xuehui, et al. Recent progress in carbon fiber electrodes for structural supercapacitors composites[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6010-6028 (in Chinese).
    [7] MAUREIRA D, ROMERO O, ILLANES A, et al. Industrial bioelectrochemistry for waste valorization: State of the art and challenges[J]. Biotechnology Advances, 2023, 64: 108123. doi: 10.1016/j.biotechadv.2023.108123
    [8] LIU N, LI W, PASTA M, et al. Nanomaterials for electrochemical energy storage[J]. Frontiers of Physics, 2014, 9(3): 323-350. doi: 10.1007/s11467-013-0408-7
    [9] SHAH N, UL-ISLAM M, KHATTAK W A, et al. Overview of bacterial cellulose composites: A multipurpose advanced material[J]. Carbohydrate Polymers, 2013, 98(2): 1585-1598. doi: 10.1016/j.carbpol.2013.08.018
    [10] WANG J, TAVAKOLI J, TANG Y. Bacterial cellulose production, properties and applications with different culture methods - A review[J]. Carbohydrate Polymers, 2019, 219: 63-76. doi: 10.1016/j.carbpol.2019.05.008
    [11] SRIPLAI N, PINITSOONTORN S. Bacterial cellulose-based magnetic nanocomposites: A review[J]. Carbohydrate Polymers, 2021, 254: 117228. doi: 10.1016/j.carbpol.2020.117228
    [12] PANAITESCU D M, FRONE A N, CHIULAN I, et al. Structural and morphological characterization of bacterial cellulose nano-reinforcements prepared by mechanical route[J]. Materials & Design, 2016, 110: 790-801.
    [13] SWINGLER S, GUPTA A, GIBSON H, et al. Recent advances and applications of bacterial cellulose in biomedicine[J]. Polymers, 2021, 13(3): 412. doi: 10.3390/polym13030412
    [14] COSTA A F S, ALMEIDA F C G, VINHAS G M, et al. Production of bacterial cellulose by gluconacetobacter hansenii using corn steep liquor as nutrient sources[J]. Frontiers in Microbiology, 2017, 8.
    [15] CHEN J, CHEN C, LIANG G, et al. In situ preparation of bacterial cellulose with antimicrobial properties from bioconversion of mulberry leaves[J]. Carbohydrate Polymers, 2019, 220: 170-175. doi: 10.1016/j.carbpol.2019.05.062
    [16] HAMSAN M H, HALIM N A, DEMON S Z N, et al. Multifunction web-like polymeric network bacterial cellulose derived from SCOBY as both electrodes and electrolytes for pliable and low-cost supercapacitor[J]. Polymers, 2022, 14(15): 3196. doi: 10.3390/polym14153196
    [17] 朱晓东, 杜昀怡, 原续波, 等. 细菌纤维素的最新研究进展[J]. 高分子通报, 2022(5): 17-26.

    ZHU Xiaodong, DU Yunyi, YUAN Xubo, et al. Recent progress on bacterial cellulose[J]. Polymer Bulletin, 2022(5): 17-26(in Chinese).
    [18] TAJIMA K, IMAI T, YUI T, et al. Cellulose-synthesizing machinery in bacteria[J]. Cellulose, 2022, 29(5): 2755-2777. doi: 10.1007/s10570-021-04225-7
    [19] KAWEE N, LAM N T, SUKYAI P. Homogenous isolation of individualized bacterial nanofibrillated cellulose by high pressure homogenization[J]. Carbohydrate Polymers, 2018, 179: 394-401. doi: 10.1016/j.carbpol.2017.09.101
    [20] 梁琳. 低维功能纳米材料的合成及其在电化学领域的应用 [D]. 合肥: 中国科学技术大学, 2014.

    LIANG Lin. Synthesis and electrochemical applications of low-dimensional functional nanometerials [D]. Hefei: University of Science and Technology of China, 2014(in Chinese).
    [21] 董丽攀, 李政, 王福迎, 等. 细菌纤维素@聚吡咯-单壁碳纳米管导电膜的制备与表征[J]. 复合材料学报, 2019, 36(3): 723-724.

    DONG Lipan, LI Zheng, WANC Fuying, et al, Preparation and characterization of bacterial cellulose@polypyrrole-single wall carbon nanotube conductive films[J]. Acta Materiae Compositae Sinica, 2019, 36(3): 723-729 (in Chinese).
    [22] TORRES F G, DE-LA-TORRE G E, GONZALES K N, et al. Bacterial-polymer-based electrolytes: Recent progress and applications[J]. ACS Applied Energy Materials, 2020, 3(12): 11500-11515. doi: 10.1021/acsaem.0c02195
    [23] MA L, BI Z, XUE Y, et al. Bacterial cellulose: An encouraging eco-friendly nano-candidate for energy storage and energy conversion[J]. Journal of Materials Chemistry A, 2020, 8(12): 5812-5842. doi: 10.1039/C9TA12536A
    [24] BHARTI V K, SHARMA C S, KHANDELWAL M. Carbonized bacterial cellulose as free-standing cathode host and protective interlayer for high-performance potassium-sulfur batteries with enhanced kinetics and stable operation[J]. Carbon, 2023, 212: 118173. doi: 10.1016/j.carbon.2023.118173
    [25] RAMÍREZ-CARMONA M, GÁLVEZ-GÓMEZ M P, GONZÁLEZ-PEREZ L, et al. Production of bacterial cellulose hydrogel and its evaluation as a proton exchange membrane[J]. Journal of Polymers and the Environment, 2023, 31(6): 2462-2472. doi: 10.1007/s10924-023-02759-4
    [26] XIA Y, GUAN J, DU X. Bacterial cellulose derived carbon nanofiber aerogel assembled with redox active hydrogel and alpha-MoO3 nanoplate for high-performance supercapacitors[J]. Journal of Energy Storage, 2023, 72(Part E): 108776.
    [27] MASHKOUR M, RAHIMNEJAD M, MASHKOUR M, et al. Electro-polymerized polyaniline modified conductive bacterial cellulose anode for supercapacitive microbial fuel cells and studying the role of anodic biofilm in the capacitive behavior[J]. Journal of Power Sources, 2020, 478: 228822. doi: 10.1016/j.jpowsour.2020.228822
    [28] DURSUN B, SAR T, ATA A, et al. Pyrolyzed bacterial cellulose-supported SnO2 nanocomposites as high-capacity anode materials for sodium-ion batteries[J]. Cellulose, 2016, 23(4): 2597-2607. doi: 10.1007/s10570-016-0966-2
    [29] WANG W, KHABAZIAN S, CASAS-PAPIOL M, et al. Nanoarchitectonics of bacterial cellulose with nickel-phosphorous alloy as a binder-free electrode for efficient hydrogen evolution reaction in neutral solution[J]. International Journal of Hydrogen Energy, 2022, 47(69): 29753-29761. doi: 10.1016/j.ijhydene.2022.06.298
    [30] WANG W, BLACK A P, LIU C, et al. High performance N-doped carbon nanosheet/MnO2 cathode derived from bacterial cellulose for aqueous Zn-ion batteries[J]. Journal of Materials Chemistry A, 2023, 11(32): 17272-17281. doi: 10.1039/D3TA01487H
    [31] ZHANG Z, LI Y, CUI X, et al. Understanding the advantageous features of bacterial cellulose-based separator in Li-S battery[J]. Advanced Materials Interfaces, 2022, 10(1): 2201730.
    [32] 边文杰, 钟宇光, 钟春燕, 等. 细菌纤维素在电池应用中的研究进展[J]. 纤维素科学与技术, 2021, 29(2): 48-54.

    BIAN Wenjie, ZHONG Yuguang, ZHONG Chunyan, et al. Progress of bacterial cellulose in battery application[J]. Journal of Cellulose Science and Technology, 2021, 29(2): 48-54(in Chinese).
    [33] TAFETE G A, ABERA M K, THOTHADRI G. Review on nanocellulose-based materials for supercapacitors applications[J]. Journal of Energy Storage, 2022, 48: 103938. doi: 10.1016/j.est.2021.103938
    [34] JIANG F, YIN L, YU Q, et al. Bacterial cellulose nanofibrous membrane as thermal stable separator for lithium-ion batteries[J]. Journal of Power Sources, 2015, 279: 21-27. doi: 10.1016/j.jpowsour.2014.12.090
    [35] CHENG C, YANG R, WANG Y, et al. A bacterial cellulose-based separator with tunable pore size for lithium-ion batteries[J]. Carbohydrate Polymers, 2023, 304: 120489. doi: 10.1016/j.carbpol.2022.120489
    [36] YANG Y, HUANG C, GAO G, et al. Aramid nanofiber/bacterial cellulose composite separators for lithium-ion batteries[J]. Carbohydrate Polymers, 2020, 247: 116702. doi: 10.1016/j.carbpol.2020.116702
    [37] STUMPF T R, YANG X, ZHANG J, et al. In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering[J]. Material Science and Engineering: C, 2018, 82: 372-383. doi: 10.1016/j.msec.2016.11.121
    [38] YUE L, XIE Y, ZHENG Y, et al. Sulfonated bacterial cellulose/polyaniline composite membrane for use as gel polymer electrolyte[J]. Composites Science and Technology, 2017, 145: 122-131. doi: 10.1016/j.compscitech.2017.04.002
    [39] YUAN B, CONG Z, CHENG Z, et al. Bacteria cellulose framework-supported solid composite polymer electrolytes for ambient-temperature lithium metal batteries[J]. Nanotechnology, 2022, 33(41): 415401. doi: 10.1088/1361-6528/ac64ab
    [40] YAN M, QU W, SU Q, et al. Biodegradable bacterial cellulose-supported quasi-solid electrolyte for lithium batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(12): 13950-13958.
    [41] XU D, WANG B, WANG Q, et al. High-strength internal cross-linking bacterial cellulose-network-based gel polymer electrolyte for dendrite-suppressing and high-rate lithium batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(21): 17809-17819.
    [42] LI X, YUAN L, LIU R, et al. Engineering textile electrode and bacterial cellulose nanofiber reinforced hydrogel electrolyte to enable high-performance flexible all-solid-state supercapacitors[J]. Advanced Energy Materials, 2021, 11(12): 2003010. doi: 10.1002/aenm.202003010
    [43] 杨敬轩, 陈仕艳, 王华平. 细菌纤维素制备技术与应用[J]. 高分子通报, 2013(10): 115-128.

    YANG Jingxuan, CHEN Shiyan, WANG Huaping. Progress on bacterial cellulose fermentation technology and application[J]. Polymer Bulletin, 2013(10): 115-128(in Chinese).
    [44] LI S, HUANG D, YANG J, et al. Freestanding bacterial cellulose-polypyrrole nanofibres paper electrodes for advanced energy storage devices[J]. Nano Energy, 2014, 9: 309-317. doi: 10.1016/j.nanoen.2014.08.004
    [45] 马丽娜, 石川, 赵宁, 等. 细菌纤维素基纳米生物材料在储能领域的应用[J]. 无机材料学报, 2019, 35(2): 145-157.

    MA Lina, SHI Chuan, ZHAO Ning, et al. Bacterial cellulose based nano-biomaterials for energy storage applications[J]. Journal of Inorganic Materials, 2019, 35(2): 145-157(in Chinese).
    [46] LEI W, JIN D, LIU H, et al. An overview of bacterial cellulose in flexible electrochemical energy storage[J]. ChemSusChem, 2020, 13(15): 3731-3753. doi: 10.1002/cssc.202001019
    [47] PRILEPSKII A, NIKOLAEV V, KLAVING A. Conductive bacterial cellulose: From drug delivery to flexible electronics[J]. Carbohydrate Polymers, 2023, 313: 120850. doi: 10.1016/j.carbpol.2023.120850
    [48] HUANG Y, HUANG X, MA M, et al. Recent advances on the bacterial cellulose-derived carbon aerogels[J]. Journal of Materials Chemistry C, 2021, 9(3): 818-828. doi: 10.1039/D0TC05433J
    [49] 夏文, 李政, 徐银莉, 等. 超级电容器用细菌纤维素基电极材料[J]. 化学进展, 2016, 28(11): 1682-1688.

    XIA Wen, LI Zheng, XU Yinli, et al. Bacterial cellulose based electrode material for supercapacitors[J]. Progress in Chemistry, 2016, 28(11): 1682-1688(in Chinese).
    [50] WU H, ZHANG Y, YUAN W, et al. Highly flexible, foldable and stretchable Ni-Co layered double hydroxide/polyaniline/bacterial cellulose electrodes for high-performance all-solid-state supercapacitors[J]. Journal of Materials Chemistry A, 2018, 6(34): 16617-16626. doi: 10.1039/C8TA05673K
    [51] JIANG Q, KACICA C, SOUNDAPPAN T, et al. An in situ grown bacterial nanocellulose/graphene oxide composite for flexible supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5(27): 13976-13982. doi: 10.1039/C7TA03824K
    [52] WANG W, YANG Y, CHEN Z, et al. High-performance yarn supercapacitor based on directly twisted carbon nanotube@bacterial cellulose membrane[J]. Cellulose, 2020, 27(13): 7649-7661. doi: 10.1007/s10570-020-03307-2
    [53] NOPPARUT K, THANAKORN W, SRIKULKIT K. Multilayered bacterial cellulose/reduced graphene oxide composite films for self-standing and binder-free electrode application[J]. Heliyon, 2022, 8(8): e10327. doi: 10.1016/j.heliyon.2022.e10327
    [54] ZHENG W F, FAN L L, MENG Z H, et al. Flexible quasi-solid-state supercapacitors for anti-freezing power sources based on polypyrrole@cation-grafted bacterial cellulose[J]. Carbohydrate Polymers, 2024, 324: 121502. doi: 10.1016/j.carbpol.2023.121502
    [55] BU Y, CAO M, JIANG Y, et al. Ultra-thin bacterial cellulose/poly(ethylenedioxythiophene) nanofibers paper electrodes for all-solid-state flexible supercapacitors[J]. Electrochimica Acta, 2018, 271: 624-631. doi: 10.1016/j.electacta.2018.03.155
    [56] LI Q, TANG R, ZHOU H, et al. A high-performance and flexible electrode film based on bacterial cellulose/polypyrrole/nitrogen-doped graphene for supercapacitors[J]. Carbohydrate Polymers, 2023, 311: 120754. doi: 10.1016/j.carbpol.2023.120754
    [57] ZHENG W F, FAN L L, ZHOU J G, et al. Flexible, ultrathin and integrated nanopaper supercapacitor based on cationic bacterial cellulose[J]. International Journal of Biological Macromolecules, 2024, 256(Part 2): 128497.
    [58] RANA A K, SCARPA F, THAKUR V K. Cellulose/polyaniline hybrid nanocomposites: Design, fabrication, and emerging multidimensional applications[J]. Industrial Crops and Products, 2022, 187(Part A): 115356.
    [59] HOU L, ZHI X, ZHANG W, et al. Boosting the electrochemical properties of polyaniline by one-step co-doped electrodeposition for high performance flexible supercapacitor applications[J]. Journal of Electroanalytical Chemistry, 2020, 863: 114064. doi: 10.1016/j.jelechem.2020.114064
    [60] LYU Z, WANG C, WAN C, et al. Strain-driven auto-detachable patterning of flexible electrodes[J]. Advanced Materials, 2022, 34(30): 2202877. doi: 10.1002/adma.202202877
    [61] LUO H, DONG J, ZHANG Y, et al. Constructing 3D bacterial cellulose/graphene/polyaniline nanocomposites by novel layer-by-layer in situ culture toward mechanically robust and highly flexible freestanding electrodes for supercapacitors[J]. Chemical Engineering Journal, 2018, 334: 1148-1158. doi: 10.1016/j.cej.2017.11.065
    [62] LIANG Q, WAN J, JI P, et al. Continuous and integrated PEDOT@bacterial cellulose/CNT hybrid helical fiber with “reinforced cement-sand” structure for self-stretchable solid supercapacitor[J]. Chemical Engineering Journal, 2022, 427: 131904. doi: 10.1016/j.cej.2021.131904
    [63] JIAJIA W, ZHANWEN D, PING X, et al. Fabrication of flexible polyindole/carbon nanotube/bacterial cellulose nanofiber nonwoven electrode doped by D-tartaric acid with high electrochemical performance[J]. Cellulose, 2020, 27(11): 6353-6366. doi: 10.1007/s10570-020-03199-2
    [64] WU Z Y, LIANG H W, CHEN L F, et al. Bacterial cellulose: A robust platform for design of three dimensional carbon-based functional nanomaterials[J]. Accounts of Chemical Research, 2015, 49(1): 96-105.
    [65] KONG D, QIN C, CAO L, et al. Synthesis of biomass-based porous carbon nanofibre/polyaniline composites for supercapacitor electrode materials[J]. International Journal of Electrochemical Science, 2020, 15(1): 265-279. doi: 10.20964/2020.01.02
    [66] BAI Q, XIONG Q, LI C, et al. Hierarchical porous carbons from a sodium alginate/bacterial cellulose composite for high-performance supercapacitor electrodes[J]. Applied Surface Science, 2018, 455: 795-807. doi: 10.1016/j.apsusc.2018.05.006
    [67] WANG J, WAN Y, XUN X, et al. Engineering bacteria for high-performance three-dimensional carbon nanofiber aerogel[J]. Carbon, 2021, 183: 267-276. doi: 10.1016/j.carbon.2021.07.021
    [68] WANG F, ZHANG T, RAN F. Insights into sodium-ion batteries through plateau and slope regions in cyclic voltammetry by tailoring bacterial cellulose precursors[J]. Electrochimica Acta, 2023, 441: 141770. doi: 10.1016/j.electacta.2022.141770
    [69] CHEN L F, HUANG Z H, LIANG H W, et al. Bacterial-cellulose-derived carbon nanofiber@MnO2 and nitrogen-doped carbon nanofiber electrode materials: An asymmetric supercapacitor with high energy and power density[J]. Advanced Materials, 2013, 25(34): 4746-4752. doi: 10.1002/adma.201204949
    [70] HAO X, WANG J, DING B, et al. Bacterial-cellulose-derived interconnected meso-microporous carbon nanofiber networks as binder-free electrodes for high-performance supercapacitors[J]. Journal of Power Sources, 2017, 352: 34-41. doi: 10.1016/j.jpowsour.2017.03.088
    [71] LIU Z, YUE L, WANG C, et al. Free-standing carbon nanofiber composite networks derived from bacterial cellulose and polypyrrole for ultrastable potassium-ion batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(11): 14865-14873.
    [72] ZHANG M, CHEN S, SHENG N, et al. Spinning continuous high-strength bacterial cellulose hydrogel fibers for multifunctional bioelectronic interfaces[J]. Journal of Materials Chemistry A, 2021, 9(21): 12574-12583. doi: 10.1039/D1TA01606G
    [73] SHI Z, GAO X, ULLAH M W, et al. Electroconductive natural polymer-based hydrogels[J]. Biomaterials, 2016, 111: 40-54. doi: 10.1016/j.biomaterials.2016.09.020
    [74] PAN X, LI J, MA N, et al. Bacterial cellulose hydrogel for sensors[J]. Chemical Engineering Journal, 2023, 461: 142062. doi: 10.1016/j.cej.2023.142062
    [75] HUANG J, ZHAO M, CAI Y, et al. A dual-mode wearable sensor based on bacterial cellulose reinforced hydrogels for highly sensitive strain/pressure sensing[J]. Advanced Electronic Materials, 2019, 6(1): 1900934.
    [76] WANG W, ZHANG T J, ZHANG D W, et al. Amperometric hydrogen peroxide biosensor based on the immobilization of heme proteins on gold nanoparticles-bacteria cellulose nanofibers nanocomposite[J]. Talanta, 2011, 84(1): 71-77. doi: 10.1016/j.talanta.2010.12.015
    [77] 胡伟立. 细菌纤维素的表面修饰及功能化 [D]. 上海: 东华大学, 2013.

    HU Weili. Surface modification and functionalization of bacterial cellulose [D]. Shanghai: Donghua University, 2013(in Chinese).
    [78] WANG B, YIN X, CHENG R, et al. Compressible, superelastic and fatigue resistant carbon nanofiber aerogels derived from bacterial cellulose for multifunctional piezoresistive sensors[J]. Carbon, 2022, 199: 318-328. doi: 10.1016/j.carbon.2022.08.006
    [79] MA H, LI X, LOU J, et al. Strong bacterial cellulose-based films with natural laminar alignment for highly sensitive humidity sensors[J]. ACS Applied Materials & Interfaces, 2022, 14(2): 3165-3175.
    [80] FAROOQ U, ULLAH M W, YANG Q, et al. High-density phage particles immobilization in surface-modified bacterial cellulose for ultra-sensitive and selective electrochemical detection of Staphylococcus aureus[J]. Biosensors and Bioelectronics, 2020, 157: 112163. doi: 10.1016/j.bios.2020.112163
    [81] XIANG Q, ZHANG H, LIU Z, et al. Engineered structural carbon aerogel based on bacterial cellulose/chitosan and graphene oxide/graphene for multifunctional piezoresistive sensor[J]. Chemical Engineering Journal, 2024, 480: 147825. doi: 10.1016/j.cej.2023.147825
    [82] DE SOUZA T C, AMORIM J D P D, SILVA JUNIOR C J G D, et al. Magnetic bacterial cellulose biopolymers: Production and potential applications in the electronics sector[J]. Polymers, 2023, 15(4).
    [83] SALIDKUL N, MONGKOLTHANARUK W, FAUNGNAWAKIJ K, et al. Hard magnetic membrane based on bacterial cellulose - Barium ferrite nanocomposites[J]. Carbohydrate Polymers, 2021, 264.
    [84] 张艳, 马忠雷, 李桢, 等. 轻质高强 MXene/细菌纤维素复合气凝胶的制备及其电磁屏蔽性能[J]. 复合材料学报, 2023, 40(11): 6407-6415.

    ZHANG Yan, MA Zhonglei, LI Zhen, et al. Preparation and EMl shielding properties of light weight and mechanically strong MXene/bacterial cellulose composite aerogels[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6407-6415 (in Chinese).
    [85] ZONG Y, LOU J, LI H, et al. Bacterial cellulose-based dual chemical reaction coupled hydrogel thermocells for efficient heat harvesting[J]. Carbohydrate Polymers, 2022, 294: 119789. doi: 10.1016/j.carbpol.2022.119789
    [86] LIU K, LYU J, FAN G, et al. Flexible and robust bacterial cellulose-based ionogels with high thermoelectric properties for low-grade heat harvesting[J]. Advanced Functional Materials, 2021, 32(6): 2107105.
    [87] LI H, ZONG Y, LI X, et al. Biodegradable CuI/BCNF composite thermoelectric film for wearable energy harvesting[J]. Cellulose, 2021, 28(17): 10707-10714. doi: 10.1007/s10570-021-04244-4
  • 加载中
图(6)
计量
  • 文章访问数:  136
  • HTML全文浏览量:  47
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-26
  • 修回日期:  2023-12-17
  • 录用日期:  2023-12-23
  • 网络出版日期:  2024-01-04
  • 刊出日期:  2024-06-15

目录

    /

    返回文章
    返回