留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磷杂菲三氮唑双基化合物高效阻燃环氧树脂

王鹏 刘家豪

王鹏, 刘家豪. 磷杂菲三氮唑双基化合物高效阻燃环氧树脂[J]. 复合材料学报, 2021, 38(10): 3281-3289. doi: 10.13801/j.cnki.fhclxb.20201229.003
引用本文: 王鹏, 刘家豪. 磷杂菲三氮唑双基化合物高效阻燃环氧树脂[J]. 复合材料学报, 2021, 38(10): 3281-3289. doi: 10.13801/j.cnki.fhclxb.20201229.003
WANG Peng, LIU Jiahao. Highly efficient flame-retardant epoxy resin with a novel compound containing phosphaphenanthrene and triazole groups[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3281-3289. doi: 10.13801/j.cnki.fhclxb.20201229.003
Citation: WANG Peng, LIU Jiahao. Highly efficient flame-retardant epoxy resin with a novel compound containing phosphaphenanthrene and triazole groups[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3281-3289. doi: 10.13801/j.cnki.fhclxb.20201229.003

磷杂菲三氮唑双基化合物高效阻燃环氧树脂

doi: 10.13801/j.cnki.fhclxb.20201229.003
基金项目: 国家自然科学基金(21905233);中央高校基本科研业务费专项资金(XDJK2020C024)
详细信息
    通讯作者:

    王鹏,博士,副教授,研究方向为高分子材料高效无卤阻燃改性  E-mail:wpeng3537@swu.edu.cn

  • 中图分类号: TB332;TQ323.5

Highly efficient flame-retardant epoxy resin with a novel compound containing phosphaphenanthrene and triazole groups

  • 摘要: 以对苯二甲醛、3,5-二氨基-1,2,4-三氮唑和9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)为原料合成了一种磷杂菲三氮唑双基化合物(DTZ),将其用于高效阻燃环氧树脂。利用FTIR、NMR、GPC和元素分析表征了其分子结构,采用TG和DSC研究了环氧固化物的热性能,利用极限氧指数、垂直燃烧、锥形量热、拉伸性能测试仪探究了环氧固化物的阻燃和力学性能,通过分析DTZ的热裂解行为、热氧化降解行为及炭层的形貌和结构研究了其阻燃机制。结果表明,DTZ的引入会降低环氧固化物的起始降解温度和玻璃化温度,但会提高其高温残炭率和拉伸强力。DTZ可显著提升环氧固化物的阻燃性能,当添加量为6wt%时,所得固化物的极限氧指数(LOI)值为33.5%,UL-94测试等级达到V-0级,热释放速率峰值和总热释放量分别降低21.8%和18.2%。DTZ可通过猝灭自由基、稀释可燃气体、促进基体成炭,在气相和凝聚相同时发挥阻燃作用。

     

  • 图  1  磷杂菲三氮唑双基化合物(DTZ)的合成路线

    Figure  1.  Synthetic route of novel compound with phosphaphenanthrene and triazole groups (DTZ)

    DMF—N, N-dimethylformamide

    图  2  DTZ的FTIR (a)、 1H-NMR (b)和31P-NMR (c)图谱

    Figure  2.  FTIR (a), 1H-NMR (b) and 31P-NMR (c) spectra of DTZ

    图  3  EP和8wt%DTZ/EP的FTIR图谱

    Figure  3.  FTIR spectra of EP and 8wt%DTZ/EP

    图  4  DTZ和环氧固化物在N2中的TG (a) 和DTG (b) 曲线

    Figure  4.  TG (a) and DTG (b) curves of DTZ and epoxy thermosets in N2

    图  5  环氧固化物的拉伸数据

    Figure  5.  Tensile data of epoxy thermosets

    图  6  EP和6wt%DTZ/EP的热释放速率(HRR) (a)和总热释放量(THR) (b) 曲线

    Figure  6.  Heat release rate (HRR) (a) and total heat release (THR) (b) curves of EP and 6wt%DTZ/EP

    图  7  DTZ的裂解色谱图 (a)、主要裂解产物 (b) 和DOPO衍生物的裂解路径 (c)

    Figure  7.  Pyrogram (a), main pyrolytic products (b) of DTZ and pyrolytic routes of DOPO derivatives (c)

    图  8  DTZ在空气中不同温度下的FTIR图谱

    Figure  8.  FTIR spectra of DTZ at different temperatures in air

    图  9  EP和6wt%DTZ/EP在锥形量热测试后残炭的照片(a) 和XPS图谱(b)

    Figure  9.  Photos (a) and XPS spectra (b) of char residues generated after cone calorimeter test for EP and 6wt%DTZ/EP

    表  1  环氧固化物的组成

    Table  1.   Formulations of epoxy thermosets

    SampleComposition/gDTZ/wt%
    DGEBADDMDTZ
    EP 100 21.82 0 0
    2wt%DTZ/EP 100 21.82 2.49 2
    4wt%DTZ/EP 100 21.82 5.08 4
    6wt%DTZ/EP 100 21.82 7.78 6
    8wt%DTZ/EP 100 21.82 10.59 8
    Notes: EP—Epoxy resin; DGEBA—Bisphenol A epoxy resin; DDM—4,4 '-diaminodiphenylmethane.
    下载: 导出CSV

    表  2  DTZ和环氧固化物在N2中的热数据

    Table  2.   Thermal data of DTZ and thermosets in N2

    SampleT5%/℃Tmax /℃Vmax/(%·℃−1)Y600/%Tg/℃
    DTZ 325.2 420.5 0.54 33.1
    EP 356.3 386.3 1.36 19.2 154.6
    2wt%DTZ/EP 344.1 380.7 1.14 21.4 153.7
    4wt%DTZ/EP 335.8 376.0 1.10 22.8 152.3
    6wt%DTZ/EP 330.9 370.3 1.02 25.3 150.6
    8wt%DTZ/EP 327.5 367.9 0.99 26.0 148.5
    Notes: T5%—Temperature at 5% mass loss; Vmax—Maximum mass loss rate; Tmax—Temperature at Vmax; Y600—Char yield at 600℃; Tg—Glass transition temperature.
    下载: 导出CSV

    表  3  环氧固化物的极限氧指数(LOI)值和UL-94等级

    Table  3.   Limit oxygen index (LOI) values and UL-94 ratings of epoxy thermosets

    SampleLOI/%UL-94, 3.0 mm bar
    t1+t2/sDrippingRating
    EP 25.5 BC Yes No
    2wt%DTZ/EP 29.7 11.5+5.2 No V-1
    4wt%DTZ/EP 31.2 6.3+7.2 No V-1
    6wt%DTZ/EP 33.5 4.2+2.6 No V-0
    8wt%DTZ/EP 34.7 2.3+3.1 No V-0
    Notes: t1t2—Average combustion times after the first and second applications of the flame; BC—Burn to clamp.
    下载: 导出CSV

    表  4  EP和6wt%DTZ/EP的锥形量热数据

    Table  4.   Cone calorimetry data of EP and 6wt%DTZ/EP

    SampleTTI/sav-EHC/
    (MJ·kg−1)
    TSP/m2RM/%
    EP 58 23.1 34.4 10.8
    6wt%DTZ/EP 64 19.5 29.7 15.3
    Notes: TTI—Time to ignition; av-EHC—Average effective heat combustion; TSP—Total smoke production; RM—Residual mass.
    下载: 导出CSV
  • [1] ZHANG Q R, LI Z W, LI X H, et al. Zinc ferrite nanoparticle decorated boron nitride nanosheet: Preparation, magnetic field arrangement, and flame retardancy[J]. Chemical Engineering Journal,2019,356:680-692. doi: 10.1016/j.cej.2018.09.053
    [2] JIAN X Y, AN X P, LI Y D, et al. All plant oil derived epoxy thermosets with excellent comprehensive properties[J]. Macromolecules,2017,50(15):5729-5738. doi: 10.1021/acs.macromol.7b01068
    [3] YANG G, WU W H, WANG Y H, et al. Synthesis of a novel phosphazene-based flame retardant with active amine groups and its application in reducing the fire hazard of epoxy resin[J]. Journal of Hazardous Materials,2019,366:78-87. doi: 10.1016/j.jhazmat.2018.11.093
    [4] 贺梦, 张冲, 郭晓东, 等. 含硫功能聚磷腈微纳米球的合成及其在环氧树脂阻燃中的应用[J]. 复合材料学报, 2019, 36(3):584-591.

    HE Meng, ZHANG Chong, GUO Xiaodong, et al. Synthesis of sulfur containing polyphosphazene micro-nano sphere and its application in flame retarded epxoy resin[J]. Acta Materiae Compositae Sinica,2019,36(3):584-591(in Chinese).
    [5] QU L J, SUI Y L, ZHANG C L, et al. Improved flame retardancy of epoxy resin composites modified with a low additive content of silica-microencapsulated phosphazene flame retardant[J]. Reactive & Functional Polymers,2020,148:104485.
    [6] 魏柯, 张道海, 秦舒浩, 等. 反应型和添加型磷杂菲类阻燃剂在聚合物中的应用进展[J]. 高分子材料科学与工程, 2019, 35(5):184-190.

    WEI Ke, ZHANG Daohai, QIN Shuhao, et al. Application progress of reactive and additive phosphine-based flame retardants in polymers[J]. Polymeric Materials Science and Engineering,2019,35(5):184-190(in Chinese).
    [7] 刘建华, 史铁钧, 李明, 等. 含双DOPO的双酚A-单苯并嗪合成、表征及其与环氧树脂共聚物的阻燃性能[J]. 化工学报, 2015, 66(2):820-826. doi: 10.11949/j.issn.0438-1157.20141028

    LIU Jianhua, SHI Tiejun, LI Ming, et al. Synthesis, characterization of single benzoxazine contained bis-DOPO based on bisphenol A and flame retardant performance of its copolymer with epoxy[J]. Journal of Chemical Industry and Engineering(China),2015,66(2):820-826(in Chinese). doi: 10.11949/j.issn.0438-1157.20141028
    [8] WANG J L, MA C, WANG P L, et al. Ultra-low phosphorus loading to achieve the superior flame retardancy of epoxy resin[J]. Polymer Degradation and Stability,2018,149:119-128. doi: 10.1016/j.polymdegradstab.2018.01.024
    [9] ZHANG Y, YU B, WANG B B, et al. Highly effective P-P synergy of a novel DOPO-based flame retardant for epoxy resin[J]. Industrial & Engineering Chemistry Research,2017,56(5):1245-1255.
    [10] LI S N, ZHAO X J, LIU X H, et al. Cage-ladder-structure, phosphorus-containing polyhedral oligomeric silsesquinoxanes as promising reactive-type flame retardants for epoxy resin[J]. Journal of Applied Polymer Science,2019,136(23):47607. doi: 10.1002/app.47607
    [11] ZHANG W C, LI X M, YANG R J. Novel flame retardancy effects of DOPO-POSS on epoxy resins[J]. Polymer Degradation and Stability,2011,96(12):2167-2173. doi: 10.1016/j.polymdegradstab.2011.09.016
    [12] SHEN D, XU Y J, LONG J W, et al. Epoxy resin flame-retarded via a novel melamine-organophosphinic acid salt: Thermal stability, flame retardance and pyrolysis behavior[J]. Journal of Analytical and Applied Pyrolysis,2017,128:54-63. doi: 10.1016/j.jaap.2017.10.025
    [13] WANG P, CHEN L, XIAO H. Flame retardant effect and mechanism of a novel DOPO based tetrazole derivative on epoxy resin[J]. Journal of Analytical and Applied Pyrolysis,2019,139:104-113. doi: 10.1016/j.jaap.2019.01.015
    [14] QIAN L J, QIU Y, WANG J Y, et al. High-performance flame retardancy by char-cage hindering and free radical quenching effects in epoxy thermosets[J]. Polymer,2015,107:262-269.
    [15] American Society for Testing Material International. Standard test method for tensile properties of plastic: ASTM D638—08[S]. West Conshohocken: ASTM International, 2008.
    [16] American Society for Testing Material International. Standard test method for measuring the minimum oxygen concentration to support candle-like combustion of plastics (oxygen index): ASTM D2863—06[S]. West Conshohocken: ASTM International, 2006.
    [17] 中国国家标准化管理委员会. 塑料燃烧性能的测定 水平法和垂直法: GB/T 2408—2008[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the people’s Republic of China. Plastics: Determination of burning characteristics: Horizontal and vertical test: GB/T 2408—2008[S]. Beijing: China Standards Press, 2009(in Chinese).
    [18] International Organization for Standardization. Reactionto-fire tests: Heat release, smoke production and mass loss rate Part 1: Heat release rate (cone calorimeter method): ISO 5660−1: 2002[S]. Geneva: International Organization for Standardization, 2002.
    [19] ZHANG W C, LI X M, YANG R J. Pyrolysis and fire behaviour of epoxy resin composites based on a phosphorus-containing polyhedral oligomeric silsesquioxane (DOPO-POSS)[J]. Polymer Degradation and Stability,2011,96(10):1821-1832. doi: 10.1016/j.polymdegradstab.2011.07.014
    [20] WIRASAPUTRA A, YAO X H, ZHU Y M, et al. Flame-retarded epoxy resins with a curing agent of DOPO-triazine based anhydride[J]. Macromolecular Materials and Engineering,2016,301:982-991. doi: 10.1002/mame.201600094
    [21] XU W H, WIRASAPUTRA A, LIU S M, et al. Highly effective flame retarded epoxy resin cured by DOPO-based co-curing agent[J]. Polymer Degradation and Stability,2015,122:44-51. doi: 10.1016/j.polymdegradstab.2015.10.012
    [22] LIU J K, DAI J Y, WANG S P, et al. Facile synthesis of bio-based reactive flame retardant from vanillin and guaiacol for epoxy resin[J]. Composites Part B: Engineering,2020,190:107926. doi: 10.1016/j.compositesb.2020.107926
    [23] ZHANG Q Q, WANG J, YANG S, et al. Synthesis of a P/N/S-based flame retardant and its flame retardant effect on epoxy resin[J]. Fire Safety Journal,2020,113:102994. doi: 10.1016/j.firesaf.2020.102994
    [24] SUN Z Z, HOU Y B, HU Y, et al. Effect of additive phosphorus-nitrogen containing flame retardant on char formation and flame retardancy of epoxy resin[J]. Materials Chemistry and Physics,2018,214:154-164. doi: 10.1016/j.matchemphys.2018.04.065
    [25] JIAN R K, AI Y F, XIA L, et al. Organophosphorus heteroaromatic compound towards mechanically reinforced and low-flammability epoxy resin[J]. Composites Part B: Engineering,2019,168:458-466. doi: 10.1016/j.compositesb.2019.03.052
    [26] LUO Q Q, SUN Y L, YU B, et al. Synthesis of a novel reactive type flame retardant composed of phenophosphazine ring and maleimide for epoxy resin[J]. Polymer Degradation and Stability,2019,165:137-144. doi: 10.1016/j.polymdegradstab.2019.05.008
    [27] XU Y J, CHEN L, RAO W H, et al. Latent curing epoxy system with excellent thermal stability, flame retardance and dielectric property[J]. Chemical Engineering Journal,2018,347:223-232. doi: 10.1016/j.cej.2018.04.097
    [28] 卢林刚, 程哲, 丘新铭, 等. 星型绿色磷腈阻燃剂的制备及阻燃环氧树脂性能[J]. 高等学校化学学报, 2018, 39(12):2789-2796. doi: 10.7503/cjcu20180339

    LU Lingang, CHENG Zhe, QIU Xinming, et al. Preparation of green star-topology phosphazene flame retardant andproperties of flame-retardant epoxyresin[J]. Chemical Journal of Chinese Universities,2018,39(12):2789-2796(in Chinese). doi: 10.7503/cjcu20180339
    [29] WANG P, CHEN L, XIAO H, et al. Nitrogen/sulfur-containing DOPO based oligomer for highly efficient flame-retardant epoxy resin[J]. Polymer Degradation and Stability,2020,171:109023. doi: 10.1016/j.polymdegradstab.2019.109023
    [30] JIN S L, LIU Z, QIAN L J, et al. Epoxy thermoset with enhanced flame retardancy and physical-mechanical properties based on reactive phosphaphenanthrene compound[J]. Polymer Degradation and Stability,2020,172:109063. doi: 10.1016/j.polymdegradstab.2019.109063
    [31] QIU Y, QIAN L J, WANG X. Flame-retardant effect of a novel phosphaphenanthrene/triazine-trione bi-group compound on an epoxy thermoset and its pyrolysis behaviour[J]. RSC Advances,2016,6(61):56018-56027. doi: 10.1039/C6RA10752D
    [32] WANG P, XIAO H, DUAN C, et al. Sulfathiazole derivative with phosphaphenanthrene group: Synthesis, characterization and its high flame-retardant activity on epoxy resin[J]. Polymer Degradation and Stability,2020,173:109078. doi: 10.1016/j.polymdegradstab.2020.109078
    [33] LIU D Y, JI P F, ZHANG T L. A bi-DOPO type of flame retardancy epoxy prepolymer: Synthesis, properties and flame-retardant mechanism[J]. Polymer Degradation and Stability,2021,190:109629.
    [34] QIAN L J, QIU Y, SUN N, et al. Pyrolysis route of a novel, flame retardant constructed by phosphaphenanthrene and triazine-trione groups and its flame-retardant effect on epoxy resin[J]. Polymer Degradation and Stability,2014,107:98-105. doi: 10.1016/j.polymdegradstab.2014.05.007
    [35] SCHARTEL B, PERRET B, DITTRICH B, et al. Flame retardancy of polymers: The role of specific reactions in the condensed phase[J]. Macromolecular Materials and Engineering,2016,301(1):9-35. doi: 10.1002/mame.201500250
    [36] ZHAO J J, DONG X, HUANG S, et al. Performance comparison of flame retardant epoxy resins modified by DPO-PHE and DOPO-PHE[J]. Polymer Degradation and Stability,2018,156:89-99. doi: 10.1016/j.polymdegradstab.2018.08.007
    [37] LIANG W J, ZHAO B, ZHAO P H, et al. Bisphenol-S bridged penta(anilino)cyclotriphosphazene and its application in epoxy resins: Synthesis, thermal degradation, and flame retardancy[J]. Polymer Degradation and Stability,2017,135:140-151. doi: 10.1016/j.polymdegradstab.2016.11.023
    [38] GAO Y Y, DENG C, DU Y Y, et al. A novel bio-based flame retardant for polypropylene from phytic acid[J]. Polymer Degradation and Stability,2019,161:298-308. doi: 10.1016/j.polymdegradstab.2019.02.005
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  994
  • HTML全文浏览量:  426
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-14
  • 录用日期:  2020-12-14
  • 网络出版日期:  2020-12-29
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回