留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维增强环氧树脂基复合材料轴管的低速冲击失效机制及剩余压缩性能

肖杰 施涵 余许多 杨慧东 孙泽玉 余木火

肖杰, 施涵, 余许多, 等. 碳纤维增强环氧树脂基复合材料轴管的低速冲击失效机制及剩余压缩性能[J]. 复合材料学报, 2021, 38(11): 3640-3651. doi: 10.13801/j.cnki.fhclxb.20210129.004
引用本文: 肖杰, 施涵, 余许多, 等. 碳纤维增强环氧树脂基复合材料轴管的低速冲击失效机制及剩余压缩性能[J]. 复合材料学报, 2021, 38(11): 3640-3651. doi: 10.13801/j.cnki.fhclxb.20210129.004
XIAO Jie, SHI Han, YU Xuduo, et al. Failure mechanisms and residual compression performance of carbon fiber reinforced epoxy composite shaft tubes subjected to low velocity impact[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3640-3651. doi: 10.13801/j.cnki.fhclxb.20210129.004
Citation: XIAO Jie, SHI Han, YU Xuduo, et al. Failure mechanisms and residual compression performance of carbon fiber reinforced epoxy composite shaft tubes subjected to low velocity impact[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3640-3651. doi: 10.13801/j.cnki.fhclxb.20210129.004

碳纤维增强环氧树脂基复合材料轴管的低速冲击失效机制及剩余压缩性能

doi: 10.13801/j.cnki.fhclxb.20210129.004
基金项目: 上海市“科技创新行动计划”高新技术领域项目(19511106600);中央高校基本科研业务费专项资金(2232020G-12);上海汽车工业科技发展基金会2019年产学研项目(1913)
详细信息
    通讯作者:

    孙泽玉,博士,讲师,研究方向为复合材料振动与冲击  E-mail:sunzeyu@dhu.edu.cn

    余木火,博士,教授,博士生导师,研究方向为高性能复合材料的改性及应用  E-mail: yumuhuo@dhu.edu.cn

  • 中图分类号: TB332

Failure mechanisms and residual compression performance of carbon fiber reinforced epoxy composite shaft tubes subjected to low velocity impact

  • 摘要: 采用落锤冲击试验模拟低速冲击过程,对碳纤维增强环氧树脂基复合材料传动轴的轴管在不同能级冲击下的损伤行为以及冲击后的剩余压缩性能进行了研究;通过ABQUAS有限元分析软件和X射线断层扫描技术(CT)相结合的方法观察了复合材料轴管在受到低速冲击时的损伤形式,研究其内部损伤规律。结果表明,复合材料轴管的抗冲击形变能力随着冲击能量的增加先增强后减弱,在冲击能量为10 ~20 J之间出现最大值。CT无损检测结果显示复合材料轴管的失效形式包括分层损伤、树脂开裂和纤维破裂(断裂)。在低能量冲击时,复合材料轴管主要产生分层损伤和树脂的开裂,而纤维断裂损伤只出现在冲击位置,且随着冲击能量的增加纤维断裂现象愈加显著。有限元仿真结果显示复合材料轴管中的碳纤维在拉伸方向的失效明显小于压缩失效,压缩失效沿纤维排布方向扩散,拉伸失效沿轴向和横向呈十字扩散,轴向失效的程度大于横向失效的程度;而树脂的压缩失效沿轴向从冲击位置向横向扩散,扩散形状近似圆形,越靠近圆心失效越明显,拉伸失效范围呈十字,整体失效沿十字边缘扩散。

     

  • 图  1  环氧树脂体系固化过程中的分段加热方案

    Figure  1.  Subsection heating scheme during curing of the epoxy resin system

    图  2  缠绕成型工艺制备碳纤维/环氧树脂复合材料管流程

    Figure  2.  Schematic diagram of filament winding process of preparing carbon fiber/epoxy resin composite tube

    图  3  低速冲击试验机:(a)总成图;(b)直径为12.5 mm的冲头;(c)信号接收仪

    Figure  3.  Low-velocity impact test set-up: (a) Assembly drawing; (b) Punch with 12.5 mm diameter; (c) Signal receiver

    图  4  低速冲击工装改进:(a) 管两端金属套件约束;(b) 实际测试V型槽约束

    Figure  4.  Improved low velocity impact measurement installation: (a) Composite tube-installed metal kits; (b) Actual LVI tests

    图  5  碳纤维/环氧树脂复合材料轴管有限元模型

    Figure  5.  Finite element mode of carbon fiber/epoxy composite shaft tubes

    图  6  轴向压缩试验:(a) 冲击后压缩碳纤维/环氧树脂复合材料轴管样品;(b) 径向压缩测试图

    Figure  6.  Radial compression test: (a) Impact-damaged carbon fiber/epoxy composite shaft tube; (b) Location of damaged tube

    图  7  不同冲击能量下碳纤维/环氧树脂复合材料轴管接触力-位移曲线

    Figure  7.  Force-displacement curves for carbon fiber/epoxy composite shaft tubes under different impact energies

    图  8  不同冲击能量下碳纤维/环氧树脂复合材料轴管位移-时间曲线

    Figure  8.  Displacement-time diagrams for carbon fiber/epoxy composite shaft tubes under different impact energies

    图  9  不同冲击能量下碳纤维/环氧树脂复合材料轴管的残余形变率随冲击能量的变化

    Figure  9.  Residual deformation rate of carbon fiber/epoxy composite shaft tubes varies with the impact energy

    图  10  不同冲击能量下碳纤维/环氧树脂复合材料轴管的吸收能量-时间曲线

    Figure  10.  Energy-time diagrams for carbon fiber/epoxy composite shaft tubes under different impact energies

    图  11  不同冲击能量下碳纤维/环氧树脂复合材料轴管的轴向CT切片图像

    Figure  11.  CT images for carbon fiber/epoxy composite shaft tubes under different impact energies

    图  12  不同冲击能量下碳纤维/环氧树脂复合材料轴管内纤维的压缩失效云图

    Figure  12.  Compression failure nephograms of carbon fiber/epoxy composite shaft tubes under different impact energies

    图  13  不同冲击能量下碳纤维/环氧树脂复合材料轴管内纤维的拉伸失效云图

    Figure  13.  Tensile failure nephograms of carbon fiber/epoxy composite shaft tubes under different impact energies

    图  14  不同冲击能量下碳纤维/环氧树脂复合材料轴管内树脂的压缩失效云图

    Figure  14.  Compression failure nephograms of resin in the carbon fiber/epoxy composite shaft tubes under different impact energies

    图  15  不同冲击能量下碳纤维/环氧树脂复合材料轴管内树脂的拉伸失效云图

    Figure  15.  Tensile failure nephograms of resin in the carbon fiber/epoxy composite shaft tubes under different impact energies

    图  16  未受冲击管在不同冲击能量下的碳纤维/环氧树脂复合材料轴管的压缩载荷随位移的变化曲线

    Figure  16.  Typical compression load–displacement curves of carbon fiber/epoxy composite unimpacted tube, and tubes under different impact energy

    表  1  碳纤维/环氧树脂复合材料参数

    Table  1.   Materials’ parameters of carbon fiber/epoxy composites

    Elastic parameter of compositesFailure parameter of Hashin criterion
    E11= 123.3 GPa XT= 1632 MPa;
    YC=ZT=34 MPa
    E22=E33=7.78 GPa XC= 704 MPa;
    YC=ZC=68 MPa
    υ12=υ13=0.27 S12=80 MPa;
    S13= S23=55 MPa
    υ23=0.42 Gft=90 kJ/m2;
    Gfc=80 kJ/m2
    G12= G13=5 GPa Gmt=520 J/m2;
    Gmc=1580 J/m2
    G23=3.1 GPa
    Notes:E11, E22, E33—Elasticity modulus in the fiber direction, perpendicular to the fiber direction and normal direction, respectively; υ—Poisson's ratio; XT, YT, ZT—Tensile strength in the fiber direction, perpendicular to the fiber direction and normal direction, respectively; XC, YC, ZC—Compressive strength in the fiber direction, perpendicular to the fiber direction and normal direction, respectively; S12, S13, S23 —Sheer strength of the plane in the normal direction, perpendicular to the fiber direction and fiber direction, respectively; G12, G13, G23—Shear modulus of the plane in the normal direction, perpendicular to the fiber direction and fiber direction, respectively; Gft, Gfc, Gmt, Gmc—Fracture energy density generated from the fiber tensile stress, fiber compression stress, matrix tensile stress and matrix compression stress, respectively.
    下载: 导出CSV
  • [1] YAN X P, LIANG X X, OUYANG W, et al. A review of progress and applications of ship shaft-less rim-driven thrusters[J]. Ocean Engineering,2017,144:142-156. doi: 10.1016/j.oceaneng.2017.08.045
    [2] 赵云峰. 先进纤维增强树脂基复合材料在航空航天工业中的应用[J]. 军民两用技术与产品, 2010(1):4-6. doi: 10.3969/j.issn.1009-8119.2010.01.002

    ZHAO Y F. Application of advanced fiber Reinforced resin matrix composites in aerospace industry[J]. Dual-use Technologies and Products,2010(1):4-6(in Chinese). doi: 10.3969/j.issn.1009-8119.2010.01.002
    [3] 潘鼎, 曾凡龙, 荣海琴. 中国复合材料的发展与展望[J]. 玻璃钢, 2006(3):16-26.

    PAN D, ZENG F L, RONG H Q. Development and prospect of composite materials in China[J]. Glass Fiber Reinforced Plastics,2006(3):16-26(in Chinese).
    [4] HETHERINGTON P L, KRAUS R F, DARLOW M S. Demonstration of a supercritical composite helicopter power transmission shaft[J]. Journal of the American Helicopter Society, 1990, 35(1): 23-28.
    [5] LI H C, WANG J, BAKER A. Rapid composite bonded repair for helicopter tail drive shafts[J]. Composites Part B: Engineering,2012,43(3):1579-1585. doi: 10.1016/j.compositesb.2011.08.012
    [6] NADEEM S S, GIRIDHARA G, RANGAVITTAL H K. A Review on the design and analysis of composite drive shaft[J]. Materials Today: Proceedings,2018,5(1):2738-2741. doi: 10.1016/j.matpr.2018.01.058
    [7] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001

    DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):1-12(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.001
    [8] KHALID Y A, MUTASHER S A, SAHARI B B, et al. Bending fatigue behavior of hybrid aluminum/composite drive shafts[J]. Materials & Design,2007,28(1):329-334. doi: 10.1016/j.matdes.2005.05.021
    [9] SINO R, BARANGER T N, CHATELET E, et al. Dynamic analysis of a rotating composite shaft [J]. Composites Science and Technology, 2008, 68 (2): 337-345.
    [10] 赵玉飞, 袁剑民, 费又庆. 碳纤维网络增强环氧树脂基复合材料的制备与表征[J]. 复合材料学报, 2015, 32(6):1611-1617.

    ZHAO Y F, YUAN J M, FEI Y Q. Fabrication and characteri-zation of carbon fiber network reinforced epoxy matrix composites[J]. Acta Materiae Compositae Sinica,2015,32(6):1611-1617(in Chinese).
    [11] 陈燕, 葛恩德, 傅玉灿, 等. 碳纤维增强树脂基复合材料制孔技术研究现状与展望[J]. 复合材料学报, 2015, 32(2):301-316.

    CHEN Y, GE E D, FU Y C. Review and prospect of drilling technologies for carbon fiber reinforced polymer[J]. Acta Materiae Compositae Sinica,2015,32(2):301-316(in Chinese).
    [12] DING Z, WEEGER O, QI H J, et al. 4D rods: 3D structures via programmable 1D composite rods[J]. Materials & Design,2018,137:256-265. doi: 10.1016/j.matdes.2017.10.004
    [13] MUTASHER S A. Prediction of the torsional strength of the hybrid aluminum/composite drive shaft[J]. Materials & Design,2009,30(2):215-220. doi: 10.1016/j.matdes.2008.05.024
    [14] 徐坚, 王亚会, 李林洁, 等. 2019年先进纤维复合材料研发热点回眸[J]. 科技导报, 2020, 38(1):82-92.

    XU J, WANG Y H, LI L J, et al. Hot topics of advanced fiber reinforced composites in 2019[J]. Science and Technology Review,2020,38(1):82-92(in Chinese).
    [15] 杨斌, 章继峰, 周利民. 玻璃纤维-碳纤维混杂增强PCBT复合材料层合板的制备及低速冲击性能[J]. 复合材料学报, 2015, 32(2):435-443.

    YANG B, ZHANG J F, ZHOU L M. Preparation and low-velocity impact properties of glass fiber-carbon fiber hybrid reinforced PCBT composite laminate[J]. Acta Materiae Compositae Sinica,2015,32(2):435-443(in Chinese).
    [16] 张彦, 朱平, 来新民, 等. 低速冲击作用下碳纤维复合材料铺层板的损伤分析[J]. 复合材料学报, 2006, 23(2):150-157. doi: 10.3321/j.issn:1000-3851.2006.02.026

    ZHANG Y, ZHU P, LAI X M. Low-velocity impact damage analysis in carbon fiber reinforced composite laminated plates[J]. Acta Materiae Compositae Sinica,2006,23(2):150-157(in Chinese). doi: 10.3321/j.issn:1000-3851.2006.02.026
    [17] 张辰, 饶云飞, 李倩倩, 等. 碳纤维-玻璃纤维混杂增强环氧树脂复合材料低速冲击性能及其模拟[J]. 复合材料学报, 2021, 38 (1): 165 - 176.

    ZHANG C, RAO Y Y, LI Q Q, et al. Low-velocity impact behavior and numerical simulation of carbon fiber-glass fiber hybrid reinforced epoxy composites[J]. Acta Materiae Compositae Sinica, 2021, 38 (1): 165 - 176(in Chinese).
    [18] 李春晓. 碳纤维及其复合材料在汽车领域的应用[J]. 新材料产业, 2019(1):5-7.

    LI C X. Application of carbon fiber and composite ma-terials in automotive industry[J]. New Materials Industry,2019(1):5-7(in Chinese).
    [19] AP C A, GUIMARAES T A M, DA SILVA B R, et al. Analysis of the dynamic behavior of a rotating composite hollow shaft[J]. Latin American Journal of Solids and Structures,2017,14(1):1-16. doi: 10.1590/1679-78253168
    [20] GNING P B, TARFAOUI M, COLLOMBET F, et al. Damage development in thick composite tubes under impact loading and influence on implosion pressure: experimental observations[J]. Composites Part B: Engineering,2005,36(4):306-318. doi: 10.1016/j.compositesb.2004.11.004
    [21] LIN Q H, LI B M. Numerical simulation of dynamic large deformation and fracture damage for solid armature in electromagnetic railgun[J]. Technology Definition,2020,16(2):348-353. doi: 10.1016/j.dt.2019.05.020
    [22] KARA M, KIRICI M, TATAR A C, et al. Impact behavior of carbon fiber/epoxy composite tubes reinforced with multi-walled carbon nanotubes at cryogenic environment[J]. Composites Part B: Engineering,2018,145:145-154. doi: 10.1016/j.compositesb.2018.03.027
    [23] MOKHTAR I, YAHYA M Y, KADER A S A, et al. Transverse impact response of filament wound basalt composite tubes[J]. Composites Part B: Engineering,2017,128:134-145. doi: 10.1016/j.compositesb.2017.01.005
    [24] 林智育, 许希武, 朱伟垚. 复合材料层板冲击损伤特性及冲击后压缩强度研究[J]. 航空材料学报, 2011, 31(1):73-80. doi: 10.3969/j.issn.1005-5053.2011.1.014

    LIN Z Y, XU X W, ZHU W Y. Experimental study on impact damage characteristics and residual compressive strength of composite laminates[J]. Journal of Aeronautical Ma-terials,2011,31(1):73-80(in Chinese). doi: 10.3969/j.issn.1005-5053.2011.1.014
    [25] ZHANG C, TAN K T. Low-velocity impact response and compression after impact behavior of tubular composite sandwich structures[J]. Composites Part B: Engineering,2020,193:108026.
    [26] CHRISTENSEN R M. Tensor transfor-mations and failure criteria for the analysis of fiber composite materials[J]. Journal of Composite Materials, 1988, 22 (9): 874-897.
    [27] CHRISTENSEN R M. Failure criteria for fiber composite materials, the astonishing sixty year search, definitive usable results[J]. Composites Science and Technology, 2019, 182: 107718.
    [28] GU J F, CHEN P H. Some modifications of Hashin’s failure criteria for unidirectional composite materials[J]. Composite Structures, 2017, 182: 143-152
    [29] MACEDO R Q D, FERREIRA R, GUEDESET J M, et al. Intraply failure criterion for unidirectional fiber reinforced composites by means of asymptotic homogenization[J]. Composite Structures, 2017, 159, 335-349.
    [30] MURTY A V K, NAIK G N, GOPALAKRISHNAN S. Towards a rational failure criterion for unidirectional composite laminae[J]. Mechanics of Advanced Materials and Structures, 2005, 12(2): 147-157.
    [31] ZHAO H W, LIU X G, KENT A. Mechanical properties research of carbon fiber composite laminates[J]. Materials Science Forum,2020,980:107-116.
    [32] FENG D, AYMERICH F. Damage prediction in composite sandwich panels subjected to low-velocity impact[J]. Composites Part A: Applied Science and Manufacturing,2013,52:12-22. doi: 10.1016/j.compositesa.2013.04.010
    [33] PIECZONKA L, UKOWSKI P, KLEPKA A, et al. Impact da-mage detection in light composite sandwich panels using piezo-based nonlinear vibro-acoustic modulations[J]. Smart Materials and Structures,2014,23(10):105021. doi: 10.1088/0964-1726/23/10/105021
    [34] 中国国家标准化管理委员会. 纤维增强热固性塑料管平行板外载性能试验方法: GB/T 5352—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of China. Test Method for external Load performance of fiber-reinforced thermo-setting plastic pipe Andante: GB/T 5352—2005[S]. Beijing: Standards Press of China, 2005(in Chinese).
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  1037
  • HTML全文浏览量:  476
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-24
  • 录用日期:  2021-01-15
  • 网络出版日期:  2021-02-01
  • 刊出日期:  2021-11-01

目录

    /

    返回文章
    返回