留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢管约束竹-混凝土组合柱轴压力学性能

韦宝幸 魏洋 王高飞 邢泽 林煜

韦宝幸, 魏洋, 王高飞, 等. 钢管约束竹-混凝土组合柱轴压力学性能[J]. 复合材料学报, 2024, 41(6): 3109-3121.
引用本文: 韦宝幸, 魏洋, 王高飞, 等. 钢管约束竹-混凝土组合柱轴压力学性能[J]. 复合材料学报, 2024, 41(6): 3109-3121.
WEI Baoxing, WEI Yang, WANG Gaofei, et al. Compressive performance of bamboo scrimber and concrete-filled steel tube columns[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3109-3121.
Citation: WEI Baoxing, WEI Yang, WANG Gaofei, et al. Compressive performance of bamboo scrimber and concrete-filled steel tube columns[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3109-3121.

钢管约束竹-混凝土组合柱轴压力学性能

基金项目: 国家自然科学基金(52378244;52308257); 江苏省自然科学基金(BK20231028;BK20230399); 江苏省重点研发计划(BE2020703)
详细信息
    通讯作者:

    魏 洋,博士,教授,博导,研究方向为约束混凝土结构 E-mail: wy78@njfu.edu.cn

  • 中图分类号: TU398.6

Compressive performance of bamboo scrimber and concrete-filled steel tube columns

Funds: National Natural Science Foundation of China (52378244; 52308257); Natural Science Foundation of Jiangsu Province(BK20231028; BK20230399); Key Research and Development Project of Jiangsu Province (BE2020703).
  • 摘要: 将轻质高强的重组竹埋入钢管混凝土柱(CFST)的核心形成钢管约束竹-混凝土组合柱(BCFSTs),期望利用钢管的约束作用充分发挥重组竹的抗压强度并延缓其劈裂破坏。为研究BCFSTs的轴压性能,在3组BCFSTs轴压试验的基础上,采用ABAQUS有限元软件建立了相应的模型进行了非线性有限元分析。通过比对试件的破坏形式、荷载-位移曲线等结果,验证了有限元模型的可靠性与适用性;基于验证后的有限元模型,对重组竹尺寸和钢管径厚比两个关键设计变量进行参数化分析。结果表明:在相同钢管壁厚的钢管混凝土柱中,增大重组竹截面尺寸可以抑制荷载-位移曲线峰值点后的下降过程,BCFSTs的峰值承载力相较于CFST的提升范围均在8%以上,最大提升16%;试件的极限荷载呈现明显增长趋势,BCFSTs的极限承载力相较于CFST的最大提升可达到33.2%。钢管壁厚的增加使得重组竹和混凝土受到的环向约束增强,核心截面强度得以提高,钢管壁厚由4.5 mm变化为6.0 mm时,试件极限荷载最大提升18.2%。

     

  • 图  1  钢管约束竹-混凝土组合柱结构概念图

    Figure  1.  Schematic diagram of the structure concept of BCFSTs

    图  2  试件及加载测量装置

    Figure  2.  Specimen and loading measuring device

    图  3  重组竹轴压应力-应变曲线及材料方向示意

    Figure  3.  Compressive stress-strain curve and material direction indication of bamboo scrimber

    图  4  BCFSTs有限元模型边界条件及网格划分

    Figure  4.  Boundary conditions and meshing of BCFSTs finite element model

    图  5  BCFSTs典型破坏形态

    Figure  5.  Typical failures modes of BCFSTs

    图  6  D1 T4.5系列BCFSTs试件荷载-位移曲线对比

    Figure  6.  Comparison of load-displacement curves of D1 T4.5 series

    图  8  D2 T6.0系列BCFSTs试件荷载-位移曲线对比

    Figure  8.  Comparison of load-displacement curves of D2 T6.0 series

    图  7  D2 T4.5系列BCFSTs试件荷载-位移曲线对比

    Figure  7.  Comparison of load-displacement curves of D2 T4.5 series

    图  9  不同参数BCFSTs计算荷载-位移曲线对比

    Figure  9.  Comparation of load-displacement curves of BCFSTs with different parameters

    图  10  典型BCFSTs荷载-位移曲线

    Figure  10.  Typical load-displacement curve of BCFSTs

    图  11  重组竹尺寸对BCFSTs轴压性能的影响

    Figure  11.  Effect of bamboo scrimber dimension on axial compression properties of BCFSTs

    图  12  钢管径厚比对BCFSTs极限荷载的影响

    Figure  12.  Influence of the diameter-thickness ratio on the ultimate load of BCFSTs

    表  3  重组竹各向异性弹性常数

    Table  3.   Anisotropic elastic constant of bamboo scrimber

    E1/MPaE2/MPaE3/MPav12v13v23G12/MPaG13/MPaG23/MPa
    168802688.122193.420.420.410.45558.64569.31155.62
    Notes: E1, E2 and E3 are the compressive elastic modulus of the material in the x, y and z directions, respectively; v12, v13 and v23 are the Poisson's ratio of the material in the x, y and z planes, respectively; G12, G13 and G23 are the shear modulus of the material in the x, y and z planes, respectively.
    下载: 导出CSV

    表  1  试件基本参数

    Table  1.   Basic parameters of specimens

    Working condition Specimens D T D/T L Working condition Specimens D T D/T L
    W1 D1 T4.5 C80 114 4.5 25.33 - W3 D2 T6.0 C80 133 6.0 22.17 -
    D1 T4.5 L30 C80 114 4.5 25.33 30 D2 T6.0 L40 C80 133 6.0 22.17 40
    D1 T4.5 L40 C80 114 4.5 25.33 40 D2 T6.0 L50 C80 133 6.0 22.17 50
    D1 T4.5 L50 C80 114 4.5 25.33 50 D2 T6.0 L60 C80 133 6.0 22.17 60
    D1 T4.5 L60 C80 114 4.5 25.33 60 D2 T6.0 L70 C80 133 6.0 22.17 70
    D1 T4.5 L70 C80 114 4.5 25.33 70 D2 T6.0 L80 C80 133 6.0 22.17 80
    W2 D2 T4.5 C80 133 4.5 29.56 - W4 D1 T6.0 C80 114 6.0 19.00 -
    D2 T4.5 L40 C80 133 4.5 29.56 40 D1 T6.0 L30 C80 114 6.0 19.00 30
    D2 T4.5 L50 C80 133 4.5 29.56 50 D1 T6.0 L40 C80 114 6.0 19.00 40
    D2 T4.5 L60 C80 133 4.5 29.56 60 D1 T6.0 L50 C80 114 6.0 19.00 50
    D2 T4.5 L70 C80 133 4.5 29.56 70 D1 T6.0 L60 C80 114 6.0 19.00 60
    D2 T4.5 L80 C80 133 4.5 29.56 80 D1 T6.0 L70 C80 114 6.0 19.00 70
    Notes: D is the outer diameter of the steel tube; T is the thickness of the steel tube; D/T is the ratio of diameter to thickness of steel tube; L is the dimension of the bamboo scrimber.
    下载: 导出CSV

    表  2  材料基本性能

    Table  2.   Basic properties of materials

    Materials Properties
    Compressive
    strength/MPa
    Elastic
    modulus /MPa
    Yield
    stress/MPa
    Ultimate
    stress/MPa
    Poisson’s
    ratio
    Ultimate
    compressive strain
    Peak
    compressive strain
    Density/
    (kg·m−3)
    Steel 205000 381 501.7 0.30 0.047 7850
    Concrete 85.78 43530 0.20 0.002 2427
    Bamboo scrimber 98.62 16880 99.36 0.41 0.043 1301
    下载: 导出CSV

    表  4  BCFSTs试件有限元计算荷载与试验荷载对比

    Table  4.   Comparison of peak and ultimate load of simulation and test of BCFSTs specimens

    Specimens Peak load ρb/% Ultimate load
    Ncc/kN Ncc'/kN Error value/% Ncu/kN Ncu'/kN Error value/%
    D1 T4.5 C80 1387.75 1331.13 4.25 0 1387.75 1331.13 4.25
    D1 T4.5 L30 C80 1487.32 1497.81 0.70 10.4 1442.22 1356.95 5.91
    D1 T4.5 L40 C80 1522.14 1507.67 0.96 18.5 1472.49 1396.78 5.42
    D1 T4.5 L50 C80 1547.35 1540.65 0.43 28.9 1602.06 1521.64 5.29
    D1 T4.5 L60 C80 1536.52 1544.12 0.49 41.6 1666.13 1658.43 0.46
    D1 T4.5 L70 C80 1519.21 1510.46 0.58 56.6 1739.48 1772.62 1.87
    D2 T4.5 C80 1677.61 1702.67 1.47 0 1677.61 1702.67 1.47
    D2 T4.5 L40 C80 1860.21 1854.49 0.31 13.3 1765.60 1726.26 2.22
    D2 T4.5 L50 C80 1921.13 1879.18 2.23 20.7 1827.75 1771.40 3.18
    D2 T4.5 L60 C80 1989.02 1938.13 2.62 29.8 1970.29 1908.73 3.23
    D2 T4.5 L70 C80 2021.10 1912.82 5.66 40.6 2120.71 1997.48 6.17
    D2 T4.5 L80 C80 2006.17 1841.81 8.92 53.0 2167.53 2092.05 3.61
    D2 T6.0 C80 2005.17 1973.06 1.63 0 2005.17 1973.06 1.63
    D2 T6.0 L40 C80 2137.14 2144.34 0.34 13.9 2087.78 2015.72 3.45
    D2 T6.0 L50 C80 2188.63 2182.60 0.28 21.7 2165.67 2094.56 3.39
    D2 T6.0 L60 C80 2165.07 2178.21 0.61 31.3 2231.11 2178.32 2.52
    D2 T6.0 L70 C80 2143.55 2148.31 0.22 42.6 2409.91 2257.39 6.76
    D2 T6.0 L80 C80 2196.31 2140.47 2.61 55.7 2486.18 2419.45 2.76
    Notes: Ncc is the test peak load, Ncc' is the numerical simulation peak load; Ncu is the test ultimate load, Ncu' is the numerical simulation ultimate load; Error value=│(test value − simulated value)/simulated value│×100%, ρb = Ab/ (Ac+ Ab), and ρb is the ratio of bamboo scrimber.
    下载: 导出CSV
  • [1] HAN L H, Yao G H, Tao Z. Performance of concrete-filled thin-walled steel tubes under pure torsion[J]. Thin-Walled Structures, 2007, 45(1): 24-36. doi: 10.1016/j.tws.2007.01.008
    [2] WEI Y, JIANG C, WU Y F. Confinement effectiveness of circular concrete-filled steel tubular columns under axial compression[J]. Journal of Constructional Steel Research, 2019, 158: 15-27. doi: 10.1016/j.jcsr.2019.03.012
    [3] 刘威. 钢管混凝土局部受压时的工作机理研究[D]. 福州大学, 2006.

    LIU W. Study on working mechanism of concrete filled steel tubular under local compression[D]. Fuzhou University, 2006. (in Chinese)
    [4] AHEMD M, LIANG Q Q, PATEL V I, et al. Experimental and numerical studies of square concrete-filled double steel tubular short columns under eccentric loading[J]. Engineering Structures, 2019, 197: 109419. doi: 10.1016/j.engstruct.2019.109419
    [5] AHEMD M, LIANG Q Q, PATEL V I, et al. Experimental and numerical investigations of eccentrically loaded rectangular concrete-filled double steel tubular columns[J]. Journal of Constructional Steel Research, 2020, 167: 105949. doi: 10.1016/j.jcsr.2020.105949
    [6] AHEMD M, LIANG Q Q, PATEL V I, et al. Nonlinear analysis of rectangular concrete-filled double steel tubular short columns incorporating local buckling[J]. Engineering Structures, 2018, 175: 13-26. doi: 10.1016/j.engstruct.2018.08.032
    [7] HASSANEIN M F, ELCHALAKANI M, KARRECH A, et al. Finite element modelling of concrete-filled double-skin short compression members with CHS outer and SHS inner tubes[J]. Marine Structures, 2018, 61: 85-99. doi: 10.1016/j.marstruc.2018.05.002
    [8] HASSANEIN M F, ELCHALAKANI M, KARRECH A, et al. Behaviour of concrete-filled double-skin short columns under compression through finite element modelling: SHS outer and SHS inner tubes[J]. Structures. Elsevier, 2018, 14: 358-375.
    [9] LIANG Q Q. Nonlinear analysis of circular double-skin concrete-filled steel tubular columns under axial compression[J]. Engineering Structures, 2017, 131: 639-650. doi: 10.1016/j.engstruct.2016.10.019
    [10] LIANG Q Q. Numerical simulation of high strength circular double-skin concrete-filled steel tubular slender columns[J]. Engineering Structures, 2018, 168: 205-217. doi: 10.1016/j.engstruct.2018.04.062
    [11] AYOUGH P, SULONG N H R, IBRAHIM Z, et al. Nonlinear analysis of square concrete-filled double-skin steel tubular columns under axial compression[J]. Engineering Structures, 2020, 216: 110678. doi: 10.1016/j.engstruct.2020.110678
    [12] CI J, JIA H, CHEN S, et al. Performance analysis and bearing capacity calculation on circular concrete-filled double steel tubular stub columns under axial compression[J]. Structures. Elsevier, 2020, 25: 554-565.
    [13] CI J, JIA H, AHMED M, et al. Experimental and numerical analysis of circular concrete-filled double steel tubular stub columns with inner square hollow section[J]. Engineering Structures, 2021, 227: 111400. doi: 10.1016/j.engstruct.2020.111400
    [14] 谢菁, 叶勇, 刘阳, 等. 内填料石钢管混凝土短柱轴压性能研究及承载力计算[J]. 建筑结构学报, 2022, 43(6): 43-52. doi: 10.14006/j.jzjgxb.2020.0440

    XIE Jing, LIU Yang, YE Yong, et al. Experimental study on axial load carrying performance and design method of stone prism and concrete-filled steel tubular stub columns[J]. Journal of Building Structures, 2022, 43(6): 43-52(in Chinese). doi: 10.14006/j.jzjgxb.2020.0440
    [15] 谢菁, 叶勇, 刘阳, 等. 内填料石钢管混凝土中长柱轴压性能试验研究[J]. 建筑结构学报, 2023, 44(2): 27-36. doi: 10.14006/j.jzjgxb.2021.0584

    XIE Jing, YE Yong, LIU Yang, et al. Experimental study on axial compressive performance of stone prism and concrete-filled steel tubular slender columns[J]. Journal of Building Structures, 2023, 44(2): 27-36(in Chinese). doi: 10.14006/j.jzjgxb.2021.0584
    [16] YE Y, LIU Y, GUO Z X, et al. Stone prism encased concrete-filled steel tube columns subjected to axial compression[J]. Structures. Elsevier, 2021, 33: 1853-1867.
    [17] NABATI A, GHANBARI T G, NG C T. CFRP-reinforced concrete-filled steel tubes with timber core under axial loading[J]. Composite Structures, 2019, 217: 37-49. doi: 10.1016/j.compstruct.2019.02.075
    [18] GHANBARI T G, MAGSI G A, GU D, et al. Double-skin concrete-timber-filled steel columns under compression[J]. Engineering Structures, 2019, 200: 109537(1-14).
    [19] GHANBARI T G, JIAO H, HOLLOWAY D. Concrete-filled circular steel tubes with a timber infill under axial compression[J]. Journal of Structural engineering, 2017, 143(7): 04017037. doi: 10.1061/(ASCE)ST.1943-541X.0001757
    [20] AZANDARIANI M G, GHANBARI-GHAZIJAHANI T, MOHEBKHA A, et al. Concrete-and timber-filled tubes under axial compression-Numerical and theoretical study[J]. Journal of Building Engineering, 2021, 44: 103231. doi: 10.1016/j.jobe.2021.103231
    [21] 李帼昌, 岳祥虎, 杨志坚. 钢管-木-混凝土轴压短柱有限元分析[J]. 沈阳建筑大学学报(自然科学版), 2021, 37(2): 193-201.

    LI G C, YUE X H, YANG Z J. Finite element analysis of steel tube-wood-concrete short columns under axial compression[J]. Journal of Shenyang Jianzhu University (Natural Science), 2021, 37(2): 193-201(in Chinese).
    [22] 李帼昌, 夏秀斌, 邱增美. 方钢管-木-混凝土中长柱轴压性能有限元分析[J]. 沈阳建筑大学学报(自然科学版), 2022, 38(6): 961-969.

    LI G C, XIA X B, QIU Z M. Finite element analysis of axial compression performance on square steel tube-timber-concrete medium long column[J]. Journal of Shenyang Jianzhu University (Natural Science), 2022, 38(6): 961-969(in Chinese).
    [23] 荣秀强, 凌志彬. 内填木芯钢管混凝土短柱轴压性能有限元分析[J]. 建筑钢结构进展, 2022, 24(05): 8-17. doi: 10.13969/j.cnki.cn31-1893.2022.05.002

    RONG X Q, LING Z B. Finite Element Analysis of Concrete-Filled Steel Tubular Short Columns with Timber Core Under Axial Compression[J]. Progress in Steel Building Structures, 2022, 24(05): 8-17(in Chinese). doi: 10.13969/j.cnki.cn31-1893.2022.05.002
    [24] 刘永军, 王紫怡, 佟舟. 钢管-再生混凝土-拼接木复合长柱轴压性能有限元分析[J]. 沈阳建筑大学学报(自然科学版), 2022, 38(06): 1020-1028.

    LIU Y J, WANG Z Y, TONG Z. Finite element analysis of axial compression performance on steel tube-recycled concrete-cpliced wood composite long columns[J]. Journal of Shenyang Jianzhu University (Natural Science), 2022, 38(06): 1020-1028(in Chinese).
    [25] ZHANG F, XIE S, XIAO J, et al. Mechanical behavior of Glass fiber-reinforced polymer-timber-steel tube-concrete composite columns under axial compression[J]. Structural Concrete, 2023, 24(1): 1296-1312. doi: 10.1002/suco.202200138
    [26] GAN D, LI Z, ZHANG T, et al. Axial compressive behaviour of circular concrete-filled steel tubular columns with an inner bamboo culm[J]. Structures. Elsevier, 2020, 26: 156-168.
    [27] 陈思, 魏洋, 赵鲲鹏, 等. 重组竹顺纹受压蠕变性能及预测模型[J]. 复合材料学报, 2021, 38(3): 944-952. doi: 10.13801/j.cnki.fhclxb.20200615.002

    CHEN S, WEI Y, ZHAO K P, et al. Creep performance and prediction model of bamboo scrimber under compression[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 944-952(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200615.002
    [28] CHEN S, Wei Y, ZHU J, et al. Experimental investigation of the shear performance of bamboo scrimber beams reinforced with bamboo pins[J]. Construction and Building Materials, 2023, 365: 130044. doi: 10.1016/j.conbuildmat.2022.130044
    [29] WEI Y, JI X, DUAN M, et al. Flexural performance of bamboo scrimber beams strengthened with fiber-reinforced polymer[J]. Construction and Building Materials, 2017, 142: 66-82. doi: 10.1016/j.conbuildmat.2017.03.054
    [30] 魏洋, 纪雪微, 端茂军, 等. 重组竹轴向应力-应变关系模型[J]. 复合材料学报, 2018, 35(3): 572-579. doi: 10.13801/j.cnki.fhclxb.20170608.002

    WEI Y, JI X W, DUAN M J, et al. Model for axial stress strain relationship of bamboo scrimber[J]. Acta Materiac Compositae Sinica, 2018, 35(3): 572-579 (in Chinese). doi: 10.13801/j.cnki.fhclxb.20170608.002
    [31] WU F, WEI Y, LIN Y, et al. Experimental study of bamboo scrimber-filled steel tube columns under axial compression[J]. Engineering Structures, 2023, 280: 115669. doi: 10.1016/j.engstruct.2023.115669
    [32] 吴凤贻, 魏洋, 王高飞, 等. 不同加载模式下钢管约束重组竹轴压力学行为[J/OL]. 复合材料学报: 1-13

    2023-08-27]. WU F Y, WEI Y, WANG G F, et al. Mechanical behavior of bamboo scrimber filled steel tube under different loading modes [J/OL]. Acta Materiae Compositae Sinica: 1-13[2023-08-27]. (in Chinese)
    [33] 刘明西, 刘承阳, 刘问, 等. 重组竹-混凝土界面粘结-滑移本构模型[J]. 复合材料学报, 2022, 39(05): 2299-2307. doi: 10.13801/j.cnki.fhclxb.20210804.002

    LIU M X, LIU C Y, LIU W, et al. Bond-slip constitutive model of bamboo scrimber-concrete interface[J]. Acta Materiae Compositae Sinica, 2022, 39(05): 2299-2307(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210804.002
    [34] 中华人民共和国住房和城乡建设部. 混凝土结构试验方法标准: GB/T50152-2012[S]. 北京: 中国建筑工业出版社, 2012.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test method of concrete structures: GB/T50152-2012[S]. Beijing: China Architecture & Building Press2012. (in Chinese)
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  242
  • HTML全文浏览量:  160
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-31
  • 修回日期:  2023-09-30
  • 录用日期:  2023-10-17
  • 网络出版日期:  2023-10-30
  • 刊出日期:  2024-06-15

目录

    /

    返回文章
    返回