留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

荧光透明功能木质复合材料的研究进展

龙寿富 张明 安聪聪

龙寿富, 张明, 安聪聪. 荧光透明功能木质复合材料的研究进展[J]. 复合材料学报, 2024, 41(6): 2881-2891. doi: 10.13801/j.cnki.fhclxb.20231129.004
引用本文: 龙寿富, 张明, 安聪聪. 荧光透明功能木质复合材料的研究进展[J]. 复合材料学报, 2024, 41(6): 2881-2891. doi: 10.13801/j.cnki.fhclxb.20231129.004
LONG Shoufu, ZHANG Ming, AN Congcong. Research progress in fluorescent transparent functional wood composite materials[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 2881-2891. doi: 10.13801/j.cnki.fhclxb.20231129.004
Citation: LONG Shoufu, ZHANG Ming, AN Congcong. Research progress in fluorescent transparent functional wood composite materials[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 2881-2891. doi: 10.13801/j.cnki.fhclxb.20231129.004

荧光透明功能木质复合材料的研究进展

doi: 10.13801/j.cnki.fhclxb.20231129.004
基金项目: 吉林省自然科学基金项目(YDZJ202201ZYTS441);吉林省发改委产业创新专项资金项目(2023C038-2);生物多糖纤维成形与生态纺织国家重点实验室(青岛大学)开放基金项目(KFKT202213)
详细信息
    通讯作者:

    张明,博士,副教授,硕士生导师,研究方向为木质多元纳米复合材料仿生智能化 E-mail: mattzhming@163.com

  • 中图分类号: F407.88;TB332

Research progress in fluorescent transparent functional wood composite materials

Funds: Natural Science Foundation of Jilin Province (YDZJ202201ZYTS441); Jilin Provincial Development and Reform Commission Industrial Innovation Special Fund Project (2023C038-2); State Key Laboratory of Bio-Fibers and Eco-Textiles (Qingdao University) Open Fund Project (KFKT202213)
  • 摘要: 随着社会不断发展,迫切需要一种环保、成本低、韧性好、强度高、附加值高的绿色复合材料−荧光透明功能木质复合材料,以替代传统玻璃门窗、建筑及家居材料。荧光透明功能木质复合材料具有绿色、高透光率、强度高、韧性好、荧光效果优异、紫外屏蔽性好 、抗菌和良好力学性能等优点,应用领域广阔。本文综述了荧光材料的发光原理及影响因素、木质基材的各种制备方法以及荧光透明功能木质复合材料的应用,并介绍了荧光透明功能木质复合材料在LED灯、传感器、加密防伪以及紫外转换和甲醛检测等方面的应用,最后展望未来的应用场景并提出了目前亟待解决的问题。

     

  • 图  1  (a) 碳点(CQDs)因表面氧化程度不同产生不同荧光[20];(b) CQDs因副产物不同,发射波长不同[21]

    Figure  1.  (a) Carbon quantum dots (CQDs) emit different fluorescence due to different surface oxidation degree[20]; (b) Emission wavelength of CQDs varies due to byproducts[21]

    图  2  (a) 木模板和透明木材的光传输路径;(b) 荧光透明功能木质复合材料的常见制备方法

    Figure  2.  (a) Light transmission path of wood form and transparent wood; (b) Production methods of common functional fluorescent transparent wood composite materials

    图  3  (a) 蓝色、绿色和红色CQDs封装出白光发光二极管(LED)[23];(b) 发光透明木材的甲醛(FA)检测[25]

    Figure  3.  (a) White light-emitting diode (LED) packaged with blue, green and red CQDs[23]; (b) Luminescent detection of formaldehyde (FA) using luminescent transparent wood[25]

    LTW—Luminescent transparent wood; Tc—Correlated color temperature

    图  4  (a) 光敏信号随着CQDs含量的增加而增加(左)[50]和光散射图(右)[45];(b) 荧光透明功能木质复合材料的pH响应变色情况[48]

    Figure  4.  (a) Photosensitive signal increases with the increasing CQDs content (Left)[50] and light scattering diagram (Right)[45]; (b) Color variation of fluorescent transparent wood composite according to the pH change[48]

    C-Zn-C-0, C-Zn-C-1, C-Zn-C-2, C-Zn-C-3—Cotton cellulose framework (CCF)/CQDs/ZnO with different contents of 0, 0.5, 1.0, 1.5 mL CQDs (1 mg/mL); TW—Transparent wood; G—Glass

    图  5  荧光透明功能木质复合材料在可见-紫外光下图像[47]

    Figure  5.  Photos of fluorescent transparent wood composite materials under visible-ultraviolet light[47]

    图  6  (a) 紫外光、蓝光阻挡减轻对眼睛影响[52];(b) 激光特性装置示意图及激光性能[9]

    Figure  6.  (a) Blocking and reducing impact on eyes towards ultraviolet and blue light[52]; (b) Schematic diagram of laser characteristic device, and laser performance of product[9]

    NCDs—Nitrogen doped carbon dots; Cel—Cellulose; UV-A, UV-B, UV-C—315-400 nm, 280-315 nm, 100-280 nm of ultraviolet; HEBL—High-energy blue light

    表  1  木材各组分及常用树脂的折射率[30, 35-39]

    Table  1.   Refractive index of wood components and common resins[30, 35-39]

    Name Refractivity
    Cellulose 1.53
    Hemicellulose 1.53
    Lignin 1.61
    Pectin, tannins 1.50
    Polymethyl methacrylate (PMMA) 1.49
    Polypropylene (PP) 1.49-1.52
    Polyvinyl chloride (PVC) 1.49
    Epoxy resin (EP) 1.53
    Polyvinyl alcohol (PVA) 1.49
    下载: 导出CSV

    表  2  荧光透明功能木质复合材料的制备方法及产品性能

    Table  2.   Preparation method of functional fluorescent transparent wood composite and its performance

    Wood Thickness/
    mm
    Wood pretreatment Fluorescence dye Resin Transmittance/
    %
    Haze/
    %
    Tensile strength/
    MPa
    Ref.
    Balsa 1.2 NaClO2 Rhodamine 6G PMMA 74 [9]
    Basswood 0.2 Lignin modification SrAl2O4:Eu2+, Dy3+ PMMA 65 95 11.6 [15]
    Basswood 2 Lignin modification SrAl2O4:Eu2+, Dy3+ EP 15.05 [16]
    Poplar 0.5 NaClO2 γ-Fe2O3@YVO4:Eu3+ PMMA 80.6 45.92 [17]
    Balsa 1 NaClO2 CQDs EP 9.4 [22]
    Balsa 1 DES delignification CQDs EP 85 85 60.92 [23]
    Poplar 1.5 NaClO2 CQDs EP 86.1 73 68 [24]
    Poplar 7 NaClO2 Lignin derived CQDs PVA 85 [25]
    Poplar 0.09 NaClO2 CdSe/ZnS quantum dot EP 90 31.2 ~43.9 [44]
    Balsa 2 NaClO2 Nitrided carbon graphite EP 87.17 92.27 [45]
    Birch 0.4 Lignin modification CQDs PVA 78.5 [46]
    Basswood 0.2 NaClO2 Formaldehyde Dodecyl
    aldehyde
    83 80 422 [47]
    Balsa 1 NaClO2 Diamine trioxide EP ~90 28.54 [48]
    Silver oak 1 Lignin modification Anionic fluorescent
    whitening agen
    EP 82 90 [49]
    Note: DES—Deep eutectic solvent.
    下载: 导出CSV
  • [1] FINK S. Transparent wood—A new approach in the functional study of wood structure[J]. Holzforschung, 1992, 46(5): 403-408. doi: 10.1515/hfsg.1992.46.5.403
    [2] 李明飞, 徐迎红. 工业木质素分级分离研究进展[J]. 林业工程学报, 2023, 8(1): 13-20.

    LI Mingfei, XU Yinghong. Research progress of industrial lignin fractionation[J]. Journal of Forestry Engineering, 2023, 8(1): 13-20(in Chinese).
    [3] 吴智慧, 张海桥. 家居木制品用水性紫外光固化涂料及其应用研究进展[J]. 林业工程学报, 2023, 8(1): 1-12.

    WU Zhihui, ZHANG Haiqiao. Research progress on waterborne UV-curable coatings and their applications for furniture and wood products[J]. Journal of Forestry Engineering, 2023, 8(1): 1-12(in Chinese).
    [4] 徐伟, 周季纯. 透明木材界面的基础性研究与应用进展[J]. 林业工程学报, 2023, 8(2): 1-9.

    XU Wei, ZHOU Jichun. Fundamental research and application progress of transparent wood interface[J]. Journal of Forestry Engineering, 2023, 8(2): 1-9(in Chinese).
    [5] DUNPHY A, PATEL K, BELPERAIN S, et al. Modulation of macrophage polarization by carbon nanodots and elucidation of carbon nanodot uptake routes in macrophages[J]. Nanomaterials, 2021, 11(5): 1116. doi: 10.3390/nano11051116
    [6] CAI S, LI J, SUN P, et al. Red emissive carbon dots-based polymer beads for recyclable and ultra-sensitive detection of malachite green in fish tissue[J]. Sensors and Actuators B: Chemical, 2023, 380: 133311.
    [7] SHARMA A, CHOI H K, LEE H J. Carbon dots for the treatment of inflammatory diseases: An appraisal of in vitro and in vivo studies[J]. Oxidative Medicine and Cellular Longevity, 2023, 2023: 3076119.
    [8] CAO L, SHIRAL FERNANDO K, LIANG W, et al. Carbon dots for energy conversion applications[J]. Journal of Applied Physics, 2019, 125(22): 220903. doi: 10.1063/1.5094032
    [9] HÖGLUND M, BAITENOV A, BERGLUND L A, et al. Transparent wood biocomposite of well-dispersed dye content for fluorescence and lasing applications[J]. ACS Applied Optical Materials, 2023, 1(5): 1043-1051.
    [10] SIRVIÖ J A, ISMAIL M Y, ZHANG K, et al. Transparent lignin-containing wood nanofiber films with UV-blocking, oxygen barrier, and anti-microbial properties[J]. Journal of Materials Chemistry A, 2020, 8(16): 7935-7946. doi: 10.1039/C9TA13182E
    [11] JIA X, LI J, WANG E. One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence[J]. Nanoscale, 2012, 4(18): 5572-5575. doi: 10.1039/c2nr31319g
    [12] YADAV R S, MONIKA, RAI S B, et al. Recent advances on morphological changes in chemically engineered rare earth doped phosphor materials[J]. Progress in Solid State Chemistry, 2020, 57: 100267. doi: 10.1016/j.progsolidstchem.2019.100267
    [13] ZHAO S, LIU W, XUE X, et al. Enhanced upconversion luminescence and modulated paramagnetic performance in NaGdF4:Yb, Er by Mg2+ tridoping[J]. RSC Advances, 2016, 6(85): 81542-81551. doi: 10.1039/C6RA13711C
    [14] KHAN W U, ZHOU L, LIANG Q, et al. Luminescence enhancement and energy transfers of Ce3+ and Sm3+ in CaSrSiO4 phosphor[J]. Journal of Materials Chemistry C, 2018, 6(28): 7612-7618. doi: 10.1039/C8TC02143K
    [15] AL-QAHTANI S, ALJUHANI E, FELALY R, et al. Development of photoluminescent translucent wood toward photochromic smart window applications[J]. Industrial & Engineering Chemistry Research, 2021, 60(23): 8340-8350.
    [16] EL-NAGGAR M E, ULLAH S, WAGEH S, et al. Preparation of epoxy resin/rare earth doped aluminate nanocomposite toward photoluminescent and superhydrophobic transparent woods[J]. Journal of Rare Earths, 2023, 41(3): 397-405. doi: 10.1016/j.jre.2022.04.018
    [17] GAN W, XIAO S, GAO L, et al. Luminescent and transparent wood composites fabricated by poly(methyl methacrylate) and γ-Fe2O3@YVO4:Eu3+ nanoparticle impregnation[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(5): 3855-3862.
    [18] JIANG K, SUN S, ZHANG L, et al. Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging[J]. Angewandte Chemie, 2015, 127(18): 5450-5453. doi: 10.1002/ange.201501193
    [19] WANG L, LI W, YIN L, et al. Full-color fluorescent carbon quantum dots[J]. Science Advances, 2020, 6(40): 6772. doi: 10.1126/sciadv.abb6772
    [20] DING H, YU S B, WEI J S, et al. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism[J]. ACS Nano, 2016, 10(1): 484-491. doi: 10.1021/acsnano.5b05406
    [21] KASPRZYK W, ŚWIERGOSZ T, BEDNARZ S, et al. Luminescence phenomena of carbon dots derived from citric acid and urea—A molecular insight[J]. Nanoscale, 2018, 10(29): 13889-13894. doi: 10.1039/C8NR03602K
    [22] ZHANG C, LIN T, YIN X, et al. Preparation of transparent wood containing carbon dots for application in the field of white-LED[J]. Journal of Wood Chemistry and Technology, 2022, 42(5): 331-341. doi: 10.1080/02773813.2022.2085749
    [23] BI Z, LI T, SU H, et al. Transparent wood film incorporating carbon dots as encapsulating material for white light-emitting diodes[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 9314-9323.
    [24] 甘健, 杨乐晨, 吴新宇, 等. 基于碳量子点的荧光透明木的制备与性能[J]. 林业工程学报, 2022, 7(4): 31-37.

    GAN Jian, YANG Lechen, WU Xinyu, et al. Preparation and properties of carbon quantum dots based fluorescent transparent wood[J]. Journal of Forestry Engineering, 2022, 7(4): 31-37(in Chinese).
    [25] LIU Y, YANG H, MA C, et al. Luminescent transparent wood based on lignin-derived carbon dots as a building material for dual-channel, real-time, and visual detection of formaldehyde gas[J]. ACS Applied Materials & Interfaces, 2020, 12(32): 36628-36638.
    [26] XU C, XIAO X, CAI C, et al. Insight into the differences in carbon dots prepared from fish scales using conventional hydrothermal and microwave methods[J]. Environmental Science and Pollution Research, 2023, 30(19): 54616-54627. doi: 10.1007/s11356-023-26275-z
    [27] XUE G, LIU K, CHEN Q, et al. Robust and low-cost flame-treated wood for high-performance solar steam generation[J]. ACS Applied Materials & Interfaces, 2017, 9(17): 15052-15057.
    [28] ZHU M, LI Y, CHEN G, et al. Tree-inspired design for high-efficiency water extraction[J]. Advanced Materials, 2017, 29(44): 1704107. doi: 10.1002/adma.201704107
    [29] VITAS S, KEPLINGER T, REICHHOLF N, et al. Functional lignocellulosic material for the remediation of copper (II) ions from water: Towards the design of a wood filter[J]. Journal of Hazardous Materials, 2018, 355: 119-127. doi: 10.1016/j.jhazmat.2018.05.015
    [30] RAO A N S, NAGARAJAPPA G B, NAIR S, et al. Flexible transparent wood prepared from poplar veneer and polyvinyl alcohol[J]. Composites Science and Technology, 2019, 182: 107719. doi: 10.1016/j.compscitech.2019.107719
    [31] FOSTER K E, JONES R, MIYAKE G M, et al. Mechanics, optics, and thermodynamics of water transport in chemically modified transparent wood composites[J]. Composites Science and Technology, 2021, 208: 108737. doi: 10.1016/j.compscitech.2021.108737
    [32] SAMANTA P, SAMANTA A, MONTANARI C, et al. Fire-retardant and transparent wood biocomposite based on commercial thermoset[J]. Composites Part A: Applied Science and Manufacturing, 2022, 156: 106863. doi: 10.1016/j.compositesa.2022.106863
    [33] 吴燕, 吴佳敏, 唐彩云, 等. 透明木材的制备方法: 中国专利, ZL 106243391A[P]. 2016-12-21.

    WU Yan, WU Jiamin, TANG Caiyun, et al. The preparation method of transparent wood: Chinese patent, ZL 106243391A[P]. 2016-12-21(in Chinese).
    [34] LI Y, FU Q, ROJAS R, et al. Lignin-retaining transparent wood[J]. ChemSusChem, 2017, 10(17): 3445-3451. doi: 10.1002/cssc.201701089
    [35] YULIANTI I, PUTRA N D, DEWI A, et al. Performances characterization of unsaturated polyester resin/polymethylmethacrylate waveguide for refractive index measurement[J]. Optik, 2021, 242: 167305. doi: 10.1016/j.ijleo.2021.167305
    [36] FUJIMATSU H, IDETA Y, NAKAMURA H, et al. Relationship between coloration of polypropylene gels and wavelength dispersions of refractive indices of components[J]. Polymer Journal, 2001, 33(1): 89-94. doi: 10.1295/polymj.33.89
    [37] ZHANG T, HUANG H, ZHANG Z, et al. Sensitive characterizations of polyvinyl chloride using terahertz time-domain spectroscopy[J]. Infrared Physics & Technology, 2021, 118: 103878.
    [38] KING D, BOGONEZ F D N, MACHAVARAM V R, et al. Monitoring cross-linking, the evolution of refractive index and the glass transition temperature of an epoxy resin using an optical fiber sensor[J]. IEEE Sensors Journal, 2022, 22(14): 14142-14150. doi: 10.1109/JSEN.2022.3178932
    [39] ZHAO C, YUAN Q, FANG L, et al. High-performance humidity sensor based on a polyvinyl alcohol-coated photonic crystal cavity[J]. Optics Letters, 2016, 41(23): 5515-5518. doi: 10.1364/OL.41.005515
    [40] LUO J, REN B, ZHANG X, et al. Modulating smart mechanoluminescent phosphors for multistimuli responsive optical wood[J]. Advanced Science, 2023, 11: 2305066.
    [41] YANG H, CHAO W, WANG S, et al. Self-luminous wood composite for both thermal and light energy storage[J]. Energy Storage Materials, 2019, 18: 15-22. doi: 10.1016/j.ensm.2019.02.005
    [42] KHATTAB T A, EL-NAGGAR M E, ABDELRAHMAN M S, et al. Facile development of photochromic cellulose acetate transparent nanocomposite film immobilized with lanthanide-doped pigment: Ultraviolet blocking, superhydrophobic, and antimicrobial activity[J]. Luminescence, 2021, 36(2): 543-555. doi: 10.1002/bio.3974
    [43] ATTA A M. Immobilization of silver and strontium oxide aluminate nanoparticles integrated into plasma-activated cotton fabric: Luminescence, superhydrophobicity, and antimicrobial activity[J]. Luminescence, 2021, 36(4): 1078-1088. doi: 10.1002/bio.4033
    [44] ZOU M, CHEN Y, CHANG L, et al. Toward 90 μm superthin transparent wood film impregnated with quantum dots for color-converting materials[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(6): 2097-2106.
    [45] YIN X, ZHANG Y, XU Y. Luminescent transparent wood from balsa wood loaded by graphite carbon nitride for application in photoelectric device[J]. Wood Science and Technology, 2023, 57(2): 467-481. doi: 10.1007/s00226-023-01459-5
    [46] 周凝宇, 冯力蕴, 杨青峰, 等. 具有抗紫外和疏水性的荧光透明木质复合材料的制备[J]. 林产工业, 2022, 59(10): 1-5.

    ZHOU Ningyu, FENG Liyun, YANG Qingfeng, et al. Preparation of fluorescent transparent wood composites with UV-resistance and hydrophobicity[J]. China Forest Products Industry, 2022, 59(10): 1-5(in Chinese).
    [47] WANG M, LIU H, FENG X, et al. State-of-the-art luminescent materials based on wood veneer with superior strength, transparency, and water resistance[J]. Chemical Engineering Journal, 2023, 454: 140225. doi: 10.1016/j.cej.2022.140225
    [48] ZHENG K, WU J, HUANG M, et al. Reversible photo-, thermal-, and pH-responsive functionalized wood with fluorescence emission[J]. Materials, 2022, 15(3): 1229. doi: 10.3390/ma15031229
    [49] CHATHOTH A M, SUBBA RAO A N, NAIR S, et al. Luminescent transparent wood from a woody cellulosic template treated with an optical brightener[J]. Journal of Applied Polymer Science, 2023, 140(28): e54028.
    [50] PAN J, ZHANG X, ZHAO C, et al. The flexible-transparent photosensitive films of cotton cellulose framework of carbon quantum dots/ZnO[J]. Materials Letters, 2018, 211: 289-292. doi: 10.1016/j.matlet.2017.10.005
    [51] FENG X, ZHAO Y, JIANG Y, et al. Use of carbon dots to enhance UV-blocking of transparent nanocellulose films[J]. Carbohydrate Polymers, 2017, 161: 253-260. doi: 10.1016/j.carbpol.2017.01.030
    [52] BARMAN B K, SELE HANDEGÅRD Ø, HASHIMOTO A, et al. Carbon dot/cellulose-based transparent films for efficient UV and high-energy blue light screening[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(29): 9879-9890.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  149
  • HTML全文浏览量:  71
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-07
  • 修回日期:  2023-12-09
  • 录用日期:  2023-12-18
  • 网络出版日期:  2024-01-02
  • 刊出日期:  2024-06-15

目录

    /

    返回文章
    返回