留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四针状氧化锌晶须/天然橡胶抗菌医用复合材料的制备

陈晰 简璐璐 张锐明

陈晰, 简璐璐, 张锐明. 四针状氧化锌晶须/天然橡胶抗菌医用复合材料的制备[J]. 复合材料学报, 2021, 38(8): 2694-2705. doi: 10.13801/j.cnki.fhclxb.20201102.001
引用本文: 陈晰, 简璐璐, 张锐明. 四针状氧化锌晶须/天然橡胶抗菌医用复合材料的制备[J]. 复合材料学报, 2021, 38(8): 2694-2705. doi: 10.13801/j.cnki.fhclxb.20201102.001
CHEN Xi, JIAN Lulu, ZHANG Ruiming. Preparation of tetra-needle-like zinc oxide whiskers/natural rubber antibacterial medical composites[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2694-2705. doi: 10.13801/j.cnki.fhclxb.20201102.001
Citation: CHEN Xi, JIAN Lulu, ZHANG Ruiming. Preparation of tetra-needle-like zinc oxide whiskers/natural rubber antibacterial medical composites[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2694-2705. doi: 10.13801/j.cnki.fhclxb.20201102.001

四针状氧化锌晶须/天然橡胶抗菌医用复合材料的制备

doi: 10.13801/j.cnki.fhclxb.20201102.001
基金项目: 国家级大学生创新创业训练计划项目(201911312011);福建省本科高校一般教育教学改革研究项目(创新创业教育教学改革项目)(FBJG20180119);龙岩市科技计划项目(2018LYF2008)
详细信息
    通讯作者:

    陈晰,硕士,高级实验师,研究方向为橡胶基复合材料  E-mail:chenxi602261370@163.com

  • 中图分类号: TB332

Preparation of tetra-needle-like zinc oxide whiskers/natural rubber antibacterial medical composites

  • 摘要: 将硬脂酸钠改性四针状氧化锌晶须(Sodium stearate-T-ZnOw)超声分散液引入天然胶乳(NRL)基体中,制备了绿色环保的Sodium stearate-T-ZnOw/橡胶(NR)抗菌医用复合材料。系统研究了Sodium stearate-T-ZnOw/NR复合材料的综合力学性能、抗菌性能和热稳定性能。结果表明:当Sodium stearate-T-ZnOw含量达3wt%时,Sodium sterate-T-ZnOw/NR复合材料的综合力学性能,相比纯胶,邵尔A硬度,300%定伸应力,拉伸强度,撕裂强度,断裂伸长率,提高了8.6%、25.4%、20.3%、25.6%、6.4%。此时,复合材料的热稳定性能也达到了最大值,相比纯胶,复合材料的起始热降解温度(T0)和终止热降解温度(Tf)分别比纯胶的T0Tf提高了21.2℃和5.9℃。当Sodiumstearate-T-ZnOw含量超过3wt%时,其能在天然胶乳中充分发挥抑制大肠杆菌、金葡萄球菌、鲍曼不动杆菌、表皮葡萄球菌生长的能力,它可以进入细菌细胞,导致细胞壁被破坏,细胞内成分泄漏,细胞死亡。

     

  • 图  1  Sodium stearate-T-ZnOw/NR复合材料的制备

    Figure  1.  Preparation of sodium stearate-T-ZnOw/NR composites

    NRL—Natural rubber latex

    图  2  制作Pure NRL和Sodium stearate-T-ZnOw/NR复合材料的生物显微镜观察的模板

    Figure  2.  Preparation of pure NRL and sodium stearate-T-ZnOw/NR composites templates for biomicroscop

    图  3  T-ZnOw的活化指数测定示意图 (a)、改性前后T-ZnOw的XRD图谱 (b)

    Figure  3.  Activation index schematic diagram of T-ZnOw (a), XRD spectrum of unmodified-T-ZnOw and sodium stearate-T-ZnOw (b)

    图  4  改性前后T-ZnOw的FTIR图谱

    Figure  4.  FTIR spectra of T-ZnOw before and after modification

    图  5  Sodium stearate与T-ZnOw表面反应机制

    Figure  5.  Reaction mechanism between sodium stearate and the surface of T-ZnOw

    图  6  未改性T-ZnOw (a) 和4wt%Sodium stearate改性后T-ZnOw (b) 的SEM图像

    Figure  6.  SEM images of unmodified-T-ZnOw (a) and sodium stearate-T-ZnOw (b)

    图  7  未改性T-ZnOw (a) 和3wt%Sodium stearate改性后T-ZnOw (b) 的脆断断面的微观形貌和立体结构的SEM图像

    Figure  7.  SEM images of the brittle failure surface and three dimensional structure diagram of composites((a) Unmodified -T-ZnOw/NR composite; (b) Sodium stearate-T-ZnOw/NR composites (Content of T-ZnOw is 3wt%))

    图  8  24 h后,纯NRL和Sodium stearate-T-ZnOw/NR对大肠杆菌 (a)、金黄色葡萄球菌 (b)、鲍曼不动杆菌 (c) 和表皮葡萄球菌 (d)的抑菌圈

    Figure  8.  Inhibition zone of the pure NRL and sodium stearate-T-ZnOw/NR against E.coil (a), S.aureus (b), A.baumannii (c) and S.epidermidis (d) after 24h

    图  9  24 h后纯NRL和Sodium stearate-T-ZnOw/NR对大肠杆菌、金黄色葡萄球菌、鲍曼不动杆菌和表皮葡萄球菌的生物显微镜图像(放大1 000倍)

    Figure  9.  Biological microscope images of the pure NRL and sodium stearate-T-ZnOw/NR against E.coil, S.aureus, A.baumannii and S.epidermidis after 24 h(Enlargement of 1 000 times)

    图  10  在N2气氛中,Sodium stearate-T-ZnOw/NR复合材料的DTG (a) 和TG曲线 (b)

    Figure  10.  DTG (a) and TG (b) curves of sodium stearate-T-ZnOw/NR composites in N2 atmosphere

    表  1  硬脂酸钠(Sodium stearate)-四针状氧化锌晶须(T-ZnOw)与橡胶(NR)的配比

    Table  1.   Ratio of sodium stearate-tetra-needle-like zinc oxide whiskers (T-ZnOw) and natural rubber (NR)

    SampleNR/wt%T-ZnOw/wt%
    Pure NR 100 0
    1wt% Sodium stearate-T-ZnOw/NR 100 1
    2wt% Sodium stearate-T-ZnOw/NR 100 2
    3wt% Sodium stearate-T-ZnOw/NR 100 3
    4wt% Sodium stearate-T-ZnOw/NR 100 4
    5wt% Sodium stearate-T-ZnOw/NR 100 5
    Note: Pure NR has been added with curing agent.
    下载: 导出CSV

    表  2  T-ZnOw的活化指数

    Table  2.   Activation index of T-ZnOw

    Mass fraction of sodium
    stearate-T-ZnOw/wt%
    012345
    Activation index of
    sodium stearate-T-ZnOw/%
    8.9 23.5 45.7 76.9 100 87.9
    下载: 导出CSV

    表  3  T-ZnOw/NR复合材料的综合力学性能

    Table  3.   Mechanical properties of T-ZnOw/NR composites

    SampleShore A hardness/(°)Modulusat
    300%/MPa
    Tensile
    strength/MPa
    TearStrength/
    (kN·m−1)
    Elongationat
    break/%
    Pure NR 35±1 1.42±0.06 23.47±0.54 28.24±0.33 823±10
    1wt% Sodium stearate-T-ZnOw/NR 36±1 1.51±0.05 28.08±1.08 31.37±0.65 839±8
    2wt% Sodium stearate-T-ZnOw/NR 37±1 1.64±0.07 31.13±0.75 33.76±0.54 856±7
    3wt% Unmodified -T-ZnOw/NR 36±1 1.65±0.04 28.23±0.37 31.67±0.56 855±7
    3wt% Sodium stearate-T-ZnOw/NR 38±1 1.78±0.03 32.39±1.03 35.48±0.71 879±9
    4wt% Sodium stearate-T-ZnOw/NR 38±0 1.68±0.06 32.17±0.76 33.95±0.65 866±10
    5wt% Sodium stearate-T-ZnOw/NR 37±1 1.55±0.04 30.75±0.65 32.65±0.45 854±8
    下载: 导出CSV

    表  4  24 h后纯NRL和Sodium stearate-T-ZnOw/NR对大肠杆菌、金黄色葡萄球菌、鲍曼不动杆菌和表皮葡萄球菌的抑菌圈大小

    Table  4.   Inhibition zone diameter of the pure NRL and sodium stearate-T-ZnOw/NR against E.coil, S.aureus, A.baumannii and S.epidermidis after 24h

    SampleInhibition zone diameter/mm
    E.coliS.aureusA.baumanniiS.epidermidis
    Pure NRL 0 0 0 0
    1wt% Sodium stearate-T-ZnOw/NRL 12.8 17.1 0 8.2
    3wt% Sodium stearate-T-ZnOw/NRL 17.6 20.8 8.7 22.6
    5wt% Sodium stearate-T-ZnOw/NRL 18.3 24.3 13.7 26.4
    Notes: E.coli—Escherichia coli; S.aureus—Staphylococcus aureus; A.baumannii—Acineto bacterbaumannii; S.epidermidis—Staphylococcus epidermidis.
    下载: 导出CSV

    表  5  Sodium stearate-T-ZnOw/NR复合材料在热降解中的特征温度

    Table  5.   Characteristic temperature of sodium stearate-T-ZnOw/NR in N2 atmosphere

    SampleT0/℃Tp/℃Tf/℃
    Pure NR 317.5 379.5 444.5
    1wt% Sodium stearate-T-ZnOw/NR 328.6 379.5 445.8
    3wt% Sodium stearate-T-ZnOw/NR 339.7 380.3 450.4
    5wt% Sodium stearate-T-ZnOw/NR 334.3 380.0 442.1
    Notes: T0—Initial thermal degradation temperature; Tp—Maximum thermal degradation temperature; Tf—Termination of thermal degradation temperature.
    下载: 导出CSV
  • [1] PENG Z, KONG L, LI S, et al. Self-assembled natural rubber/silica nanocomposites: Its preparation and characterization[J]. Composites Science and Technology,2007,67:3130-3139. doi: 10.1016/j.compscitech.2007.04.016
    [2] YAN N, WU J K, ZHAN Y H, et al. Carbon nanotubes/carbon black synergistic reinforced natural rubber compo-sites[J]. Plastics, Rubber and Composites,2009,38:290-296. doi: 10.1179/146580109X12473409436580
    [3] CHEN X, HU Z, ZHANG F, et al. Natural rubber/tetra-needle-like zinc oxide whisker composites: Their preparation and characterization[J]. Journal of Polymer Engineering,2018,38:1-8. doi: 10.1515/polyeng-2016-0366
    [4] FAIBUNCHAN P, PICHAIYUT S, CHUEANGCHAYAPHAN W, et al. Influence type of natural rubber on properties of green biodegradable thermoplastic natural rubber based on poly (butylene succinate)[J]. Polymers for Advanced Technologies,2019,30:1010-1026. doi: 10.1002/pat.4534
    [5] ZHOU Y, KOSUGI K, YAMAMOTO Y, et al. Effect of non-rubber components on the mechanical properties of natural rubber[J]. Polymers for Advanced Technologies,2016,28:159-165.
    [6] LI C P, FENG C F, PENG Z, et al. Ammonium-assisted green fabriacation of graphene/natural rubber latex composite[J]. Polymer Composites,2013,34:88-95. doi: 10.1002/pc.22380
    [7] SANTOS R J D, AGOSTINI D L D S, CABRERA F C et al. Sugarcane bagasse ash: new filler to natural rubber composite[J]. Polímeros,2014,24:646-653. doi: 10.1590/0104-1428.1547
    [8] 姜国飞, 李旭飞, 刘芳, 等. 纳米ZnO-氧化石墨烯及ZnO-氧化石墨烯/水性聚氨酯复合涂层的抗菌性能[J]. 复合材料学报, 2018, 35(7):1930-1938.

    JIANG G F, LI X F, LIU F, et al. Antibacterial properties of nano ZnO-graphene oxide and ZnO-graphene oxide/waterborne polyurethane composite coating[J]. Acta Matriae Compositae Sinica,2018,35(7):1930-1938(in Chinese).
    [9] 王德松, 张艳艳, 安静, 等. Ag/低分子量壳聚糖复合胶乳的制备及抗菌性能[J]. 复合材料学报, 2014, 31(5):1250-1257.

    WANG D S, ZHANG Y Y, AN J, et al. Preparation of Ag/low molecular weight chitosan composite colloids and their antibacterial activities[J]. Acta Matriae Compositae Sinica,2014,31(5):1250-1257(in Chinese).
    [10] 王静. 一种细菌纤维素/姜黄素复合材料的制备及表征[J]. 复合材料学报, 2018, 35(7):1897-1902.

    WANG J. Preparation and characterization of bacterial cellulose/curcumin composites[J]. Acta Matriae Compositae Sinica,2018,35(7):1897-1902(in Chinese).
    [11] CHAWLA K, CHAUHAN A P S, PANDEY A. Influence of different grades of furnace carbon blacks on curing kinetics and reinforcement of natural rubber composites[J]. Plastics, Rubber and Composites,2016,45:1-8. doi: 10.1080/14658011.2015.1110956
    [12] PRASERTSRI S, RATTANASOM N. Fumed and precipitated silica reinforced natural rubber composites prepared from latex system: Mechanical and dynamic properties[J]. Polymer Testing,2012,31:593-605. doi: 10.1016/j.polymertesting.2012.03.003
    [13] SOMARATNE M C W, LIYVANAGE N M V K, WALPALAGE S. Contribution of hydrogen and/or covalent bonds on reinforcement of natural rubber latex films with surface modified silica[J]. Journal of Applied Polymer Science,2014,131:40380-40387.
    [14] FAN X, ZHANG H, WANG J, et al. Influence of annealing temperature on field emission from tetrapod-shaped ZnO-whisker films obtained by screen printing[J]. Materials Science in Semiconductor Processing,2010,13:400-404. doi: 10.1016/j.mssp.2011.05.012
    [15] FAN X, ZHAO L, ZHOU Z, et al. Impact of Al doping on microstructure and optical characteristics of tetrapod-like zinc oxide whiskers[J]. Physica B Condensed Matter,2010,405:2538-2541. doi: 10.1016/j.physb.2010.03.026
    [16] ZHOU Z, CHU L, HU S. Microwave absorption behaviors of tetra needle like ZnO whiskers[J]. Materials Science & Engineering B,2006,126:93-96.
    [17] GUO Z, XIONG J, YANG M, et al. Microstructure and properties of tetrapod-like ZnO whiskers reinforced Al matrix composite[J]. Journal of Alloys & Compounds,2008,461:342-345.
    [18] RATHNAYAK W, ISMAIL H, BAHARIN A, et al. Enhancement of the antibacterial activity of natural rubber latex foam by the incorporation of zinc oxide nanoparticles[J]. Journal of Applied Polymer Science,2014,131:1-15.
    [19] PAN X, PENG L, LIU Y, et al. Highly antibacterial and toughened polystyrene composites with silver nanoparticles modified tetrapod-like zinc oxide whiskers[J]. Journal of Applied Polymer Science,2014,131(20):1366-1373.
    [20] PALMELA C, CHEVARIN C, XU Z, et al. Adherent-invasive Escherichia coli in inflammatory bowel disease[J]. Inflammatory Bowel Diseases,2018,67:574-587. doi: 10.1136/gutjnl-2017-314903
    [21] LINDEN D S V D, SHORT D, DITTMANN A, et al. Synergistic effects of ovine-derived cathelicidins and other antimicrobials against Escherichia coli O157: H7 and Staphylococcus aureus 1056 MRSA[J]. Biotechnology Letters,2009,31(8):1265-1267. doi: 10.1007/s10529-009-0010-9
    [22] KIM J B, JUNG W H, RYU J M. Identification of a fibrinolytic enzyme by Bacillus vallismortis and its potential as a bacteriolytic enzyme against Streptococcus mutans[J]. Biotechnology Letters,2007,29(4):605-610. doi: 10.1007/s10529-006-9284-3
    [23] 刘立华, 栾震, 陈梦玉, 等. 氢氧化铝阻燃剂的表面改性及在软质聚氯乙烯中的应用研究[J]. 首都师范大学学报, 2019, 40(2):37-41.

    LIU L H, LUAN Z, CHEN M Y, et al. Surface modification of aluminum hydroxide asflame retardant and its application in soft PVC[J]. Journal of Capital Normal University,2019,40(2):37-41(in Chinese).
    [24] 李丽匣, 韩跃新, 陶世杰. 碳酸钙晶须表面改性研究[J]. 化工矿物与加工, 2008(5):4-8. doi: 10.3969/j.issn.1008-7524.2008.05.002

    LI L X, HAN Y X, TAO S J. Research on surface modification of calcium carbonate whiskers[J]. Industrial Minerals & Processing,2008(5):4-8(in Chinese). doi: 10.3969/j.issn.1008-7524.2008.05.002
    [25] 周扬波, 古菊, 贾德民. 纳米碳酸钙的表面改性及其在橡胶中的应用[J]. 特种橡胶制品, 2004(3):54-58. doi: 10.3969/j.issn.1005-4030.2004.03.018

    ZHOU Y B, GU J, JIA D M. Surface modification of nano-calcium carbonate and its application to rubber[J]. Special Purpose Rubber Products,2004(3):54-58(in Chinese). doi: 10.3969/j.issn.1005-4030.2004.03.018
    [26] 姜玉芝, 韩跃新, 印万忠, 等. 碱式硫酸镁晶须表面改性研究[J]. 金属矿山, 2008, 4:60-63. doi: 10.3321/j.issn:1001-1250.2008.05.016

    JIANG Y Z, HAN Y X, YIN W Z, et al. Study on surface modification of basic magnesium sulfate whiskers[J]. Metal Mine,2008,4:60-63(in Chinese). doi: 10.3321/j.issn:1001-1250.2008.05.016
    [27] 孙明赫, 孙秋菊, 代丽, 等. 碳酸钙和硼酸铝晶须的表面处理研究[J]. 沈阳师范大学学报, 2011, 29(3):417-420.

    SUN M H, SUN Q J, DAI L, et al. Surface modification of calcium carbonate whiskers and aluminum borate whiskers[J]. Journal of Shenyang Normal University,2011,29(3):417-420(in Chinese).
    [28] 童柯锋, 杨小波, 杨冬冬, 等. 硬脂酸改性氢氧化镁分散性能的研究[J]. 盐业与化工, 2013, 42(11):32-38.

    TONG K F, YANG X B, YANG D D, et al. Research on dispersing performance of magnesium hydroxide modified by stearic acid[J]. Journal of Salt and Chemical Industry,2013,42(11):32-38(in Chinese).
    [29] 杨统林, 赵中华, 肖建军, 等. 硬脂酸改性纳米氧化铝的工艺[J]. 南昌大学学报, 2018, 40(1):8-12.

    YANG T L, ZHAO Z H, XIAO J J, et al. Surface modification process of nano-Al2O3 with stearic acid[J]. Journal of Nanchang University,2018,40(1):8-12(in Chinese).
    [30] 中国国家标准化管理委员会. 硫化橡胶或热塑性压入硬度试验方法 第1部分: 邵氏硬度计法: GB/T 531—2008[S]. 北京: 国家标准出版社, 2008.

    Stadardization Administration of the People’s Republic of China. Rubber vulcanized or thermoplastic-Determination of in-dentation hardness-Part 1: Duromerer method: GB/T 531-2008[S]. Beijing: Standards Press of China, 2008 (in Chinese).
    [31] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 国家标准出版社, 2009.

    Stadardization Administration of the People’s Republic of China. Rubber vulcanized or thermoplastic-Determination of stress-strain: GB/T 528—2009[S]. Beijing: Standards Press of China, 2009 (in Chinese).
    [32] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 529—2008[S]. 北京: 国家标准出版社, 2008.

    Stadardization Administration of the People’s Republic of China. Rubber vulcanized or thermoplastic-Determination of tear stress-strain: GB/T 529—2008 [S]. Beijing: Standards Press of China, 2008 (in Chinese).
    [33] 武志富, 李素娟. 氢氧化锌和氧化锌的红外光谱特征[J]. 光谱实验室, 2012, 29(4):2172-2175. doi: 10.3969/j.issn.1004-8138.2012.04.052

    WU Z F, LI S J. Infrared spectra characteristics of zinc hydroxide and zinc oxide[J]. Chinese Journal Spectroscopy Laboratory,2012,29(4):2172-2175(in Chinese). doi: 10.3969/j.issn.1004-8138.2012.04.052
    [34] 王晓梅, 郑涛, 马琳, 等. 荞麦七提取物的体外抑菌活性研究[J]. 化学与生物工程, 2015, 32(5):40-42. doi: 10.3969/j.issn.1672-5425.2015.05.010

    WANG X M, ZHENG T, MA L, et al. Optimization of extract process of total flavonoids from blueberry leaves by ultrasonic method[J]. Chemistry & Bioengineering,2015,32(5):40-42(in Chinese). doi: 10.3969/j.issn.1672-5425.2015.05.010
    [35] 宋庆平, 丁纯梅. 壳聚糖Ag微球配合物抑菌性能的研究[J]. 安徽工程科技学院学报, 2010, 25(1):5-7.

    SONG Q P, DING C M. Study on antibacterial properties of microsphere-chitosan silver complex[J]. Journal of Anhui University of Technology and Science,2010,25(1):5-7(in Chinese).
    [36] 杨婧, 林宇星, 刘莘轶, 等. 利用Mariannaea sp. HJ菌株胞内提取物合成纳米银及其抗菌特性研究[J]. 微生物学报, 2020, 60(4):749-758.

    YANG J, LIN Y X, LIU X Y, et al. Biosynthesis of silver nanoparticles by the cell-free extracts of Mariannaea sp. HJ and their antimicrobial characteristics research[J]. Acta Microbiologica Sinica,2020,60(4):749-758(in Chinese).
    [37] 项荣, 丁栋博, 范亮亮, 等. 氧化锌的抗菌机制及其安全性研究进展[J]. 中国组织工程研究, 2014, 18(3):470-475. doi: 10.3969/j.issn.2095-4344.2014.03.023

    XIANG R, DING D B, FAN L L, et al. Antibacterial mechanism and safety of zinc oxide[J]. Chinese Journal of Tissue Engineering Research,2014,18(3):470-475(in Chinese). doi: 10.3969/j.issn.2095-4344.2014.03.023
    [38] BHADRA P, MITRA M K, DAS G C, et al. Interaction of chitosan capped ZnO nanorods with Escherichia coli[J]. Materials Science and Engineering: C,2011,31(5):929-937. doi: 10.1016/j.msec.2011.02.015
    [39] RAGHUPATHI K R, KOODALI R T, MANNA A C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles[J]. Langmuir,2011,27(7):4020-4028. doi: 10.1021/la104825u
    [40] ZHANG L, DING Y, POVEY M, et al. ZnO nanofluids-A potential antibacterial agent[J]. Progress in Natural Science,2008,18(8):939-944. doi: 10.1016/j.pnsc.2008.01.026
    [41] AMNA T, HASSAN M S, BARAKAT N A M, et al. Antibacterial activity and interaction mechanism of electrospun zinc-doped titania nanofibers[J]. Applied Microbiology and Biotechnology,2012,93(2):743-751. doi: 10.1007/s00253-011-3459-0
    [42] WAHAB R, KIM Y S, MISHRA A, et al. Formation of ZnO micro-flowers prepared via solution process and their antibacterial activity[J]. Nanoscale Research Letters,2010,5(10):1675-1681. doi: 10.1007/s11671-010-9694-y
    [43] 马建中, 惠爱平, 刘俊莉. 纳米ZnO抗菌材料的研究进展[J]. 功能材料, 2014, 45(24):24001-24007. doi: 10.3969/j.issn.1001-9731.2014.24.001

    MA J Z, HUI A P, LIU J L. Research progress on antibacterial materials of nano-ZnO[J]. Journal of Functional Materials,2014,45(24):24001-24007(in Chinese). doi: 10.3969/j.issn.1001-9731.2014.24.001
    [44] LI Y, ZHANG W, NIU J, et al. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles[J]. ACS Nano,2012,6(6):5164-5173. doi: 10.1021/nn300934k
    [45] XIA T, KOVOCHICH M, LIONG M, et al. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nano-particles based on dissolution and oxidative stress properties[J]. ACS Nano,2008,2(10):2121-2134. doi: 10.1021/nn800511k
    [46] ABDULRAHMAN S H H, CHANDRASEKAEAN K, SEEMAISAMY S, et al. Impact of alkaline metal ions Mg2+, Ca2+, Sr2+ and Ba2+ on the structural, optical, thermal and antibacterial properties of ZnO nanoparticles prepared by the coprecipitation method[J]. Journal of Materials Chemistry B,2013,1:5956-5962.
    [47] ANSARI S A, KHAN M M, ANSARI M O, et al. Biogenic synthesis, photocatalytic and photoelectrochemical performance of Ag-ZnO Nanocomposite[J]. Journal of Physical Chemistry C,2013,117:27023-27030. doi: 10.1021/jp410063p
    [48] 胡占江, 赵忠, 王雪梅. 纳米氧化锌抗菌性能及机制[J]. 中国组织工程研究, 2012, 16(3):527-530. doi: 10.3969/j.issn.1673-8225.2012.03.033

    HU Z J, ZHAO Z, WANG X M. Antibacterial properties and mechanism of nano-zinc oxide[J]. Chinese Journal of Tissue Engineering Research,2012,16(3):527-530(in Chinese). doi: 10.3969/j.issn.1673-8225.2012.03.033
    [49] 陈晰, 何慧卿, 简璐璐, 等. 碱式硫酸镁晶须/橡胶基复合材料的制备[J]. 复合材料学报, 2018, 35(11):3137-3145.

    CHEN X, HE H Q, JIAN L L, et al. Preparation and characterization of magnesium oxysulfate whiskers/natural rubber composites[J]. Acta Materiae Compositae Sinica,2018,35(11):3137-3145(in Chinese).
    [50] CHEN X, QIU T. Natural rubber composites reinforced with basic magnesium oxysulfate whiskers: Processing and ultraviolet resistance/flame retardant properties[J]. Polymer Testing,2020,81:106271. doi: 10.1016/j.polymertesting.2019.106271
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  1269
  • HTML全文浏览量:  545
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-27
  • 录用日期:  2020-10-19
  • 网络出版日期:  2020-11-03
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回