留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚氨酯-环氧树脂复合材料的力学性能与韧化机制

马衍轩 付双阳 王帅飞 吴睿 高玉华 李美玉 张建 张鹏 高嵩

马衍轩, 付双阳, 王帅飞, 等. 聚氨酯-环氧树脂复合材料的力学性能与韧化机制[J]. 复合材料学报, 2024, 42(0): 1-15.
引用本文: 马衍轩, 付双阳, 王帅飞, 等. 聚氨酯-环氧树脂复合材料的力学性能与韧化机制[J]. 复合材料学报, 2024, 42(0): 1-15.
MA Yanxuan, FU Shuangyang, WANG Shuaifei, et al. Mechanical properties and toughening mechanism of polyurethane epoxy resin composite materials[J]. Acta Materiae Compositae Sinica.
Citation: MA Yanxuan, FU Shuangyang, WANG Shuaifei, et al. Mechanical properties and toughening mechanism of polyurethane epoxy resin composite materials[J]. Acta Materiae Compositae Sinica.

聚氨酯-环氧树脂复合材料的力学性能与韧化机制

基金项目: 国家自然科学基金项目(52378248);山东省自然科学基金项目(ZR2022ME121);中国水利水电科学研究院水利部水工程材料重点实验室(筹)开放研究基金项目(EMF202411);海洋环境混凝土技术教育部工程研究中心开放课题(TMduracon2022010);
详细信息
    通讯作者:

    马衍轩,博士,副教授,硕士生导师,研究方向为防灾减灾材料与技术 E-mail:yxma@qut.edu.cn

  • 中图分类号: TB332

Mechanical properties and toughening mechanism of polyurethane epoxy resin composite materials

Funds: This work was financially supported by National Natural Science Foundation of China Project (52378248), Shandong Provincial Natural Science Foundation (ZR2022ME121), the Open Research Fund of Key Laboratory of Engineering Materials of Ministry of Water Resources, China Institute of Water Resources and Hydropower Research (EMF202411), Open Research Fund of Engineering Research Center of Concrete Technology under Marine Environment, Ministry of Education (TMduracon2022010).
  • 摘要: 环氧树脂材料固化后脆性大、韧性差,表面容易发生老化、龟裂、剥落等问题,难以保护混凝土应对海工环境等复杂的工况。设计、制备了不同体系的聚氨酯/环氧树脂(PU/EP)复合材料,以PU/EP复合材料的拉伸强度、断裂伸长率、冲击韧性作为评价指标进行了正交实验,结合响应面分析法确定了PU/EP复合材料的最佳制备配方为:R值为1、PU掺量为15wt%、制备温度为80℃。研究结果表明:聚氨酯(PU)和EP交联效果良好,PU/EP复合材料的拉伸强度、断裂伸长率、冲击韧性较纯环氧树脂分别提高37.61%、52.21%、47.07%。随着PU掺量的增加,材料中柔性长链段的比例增大,形成二级网络的区域增大,分子间的配位作用以及软连段的增加极大提高了材料的力学性能,并且PU/EP复合材料的硬度和弹性模量有一定程度的降低。

     

  • 图  1  R值、PU掺量、温度对PU/EP复合材料拉伸强度的响应面

    Figure  1.  Response surface of R value, PU content and temperature to tensile strength of PU/EP composite.

    图  2  R值、PU掺量、温度对PU/EP复合材料拉伸强度的等高线

    Figure  2.  Contour lines of R value, PU content and temperature on tensile strength of PU/EP composite.

    图  3  R值、PU掺量、温度对PU/EP复合材料断裂伸长率的响应面

    Figure  3.  Response surface of R value, PU content and temperature to elongation at break of PU/EP composite

    图  4  R值、PU掺量、温度对PU/EP复合材料断裂伸长率的等高线

    Figure  4.  Contour lines of R value, PU content, temperature and elongation at break of PU/EP composite.

    图  5  R值、PU掺量、温度对PU/EP复合材料冲击韧性的响应面

    Figure  5.  Response surface of R value, PU content and temperature to impact toughness of PU/EP composite.

    图  6  R值、PU掺量、温度对PU/EP复合材料冲击韧性的等高线

    Figure  6.  contour lines of R value, PU content and temperature on impact toughness of PU/EP composite

    图  7  EP、PU和PU/EP复合材料红外图谱

    Figure  7.  infrared spectra of EP, PU and PU/EP

    图  8  PU/EP复合材料互穿网络示意图

    Figure  8.  schematic diagram of PU/EP composite interpenetrating network

    图  9  不同掺量下PU/EP复合材料断面的电镜图片:(a) 0wt% (b) 5wt% (c) 10wt% (d) 15wt% (e) 20wt%

    Figure  9.  electron microscope picture of the cross-section of PU/EP composite with different dosage: (a) 0wt% (b) 5wt% (c) 10wt% (d) 15wt% (e) 20wt%

    图  10  (a) EP、(b) PU/EP冲击断面图片

    Figure  10.  (a) EP, (b) PU/EP impact cross-section images

    图  11  (a) EP放射区、(b) PU/EP纤维区金相显微镜400倍下形貌特征

    Figure  11.  morphological characteristics of (a) EP radiation area and (b) PU/EP fiber area under metallographic microscope at 400 x magnification

    图  12  扫描电镜(a)、(b) EP、(c)、(d) PU/EP拉伸断面微观形貌

    Figure  12.  scanning electron microscopy (a), (b) EP, (c), (d) PU/EP tensile cross-section microstructure

    图  13  纳米压痕示意图: (a)典型负载时间(P-t)、(b)典型荷载位移(P-h)曲线[29]

    Figure  13.  schematic diagram of nano-indentation: (a) typical load time(P-t) curve (b) typical load displacement (P-h) curve [29]

    图  14  压入和卸载过程及计算参数[30]

    Figure  14.  Press-in and Unloading Process and Calculation Parameters[30]

    图  15  不同PU/EP荷载-深度曲线

    Figure  15.  Load-depth curves of different PU/EP

    图  16  不同PU掺量样品深度-时间曲线

    Figure  16.  Depth-time curve of samples with different PU content

    图  17  不同PU掺量样品硬度-深度曲线

    Figure  17.  Hardness-depth curve of samples with different PU content

    图  18  不同PU掺量样品弹性模量

    Figure  18.  elastic modulus of samples with different PU content

    表  1  聚氨酯/环氧树脂(PU/EP)复合材料的正交实验设计表

    Table  1.   Orthogonal test design table of Polyurethane/Epoxy resin (PU/EP) composite

    Group number A Numerical
    value
    B
    Dosage/%
    C Temperature/
    1(A1B1C1) 0.8 5 70
    2(A1B2C2) 0.8 10 80
    3(A1B3C3) 0.8 15 90
    4(A1B4C4) 0.8 20 100
    5(A2B1C2) 0.9 5 80
    6(A2B2C1) 0.9 10 70
    7(A2B3C4) 0.9 15 100
    8(A2B4C3) 0.9 20 90
    9(A3B1C3) 1.0 5 90
    10(A3B2C4) 1.0 10 100
    11(A3B3C1) 1.0 15 70
    12(A3B4C2) 1.0 20 80
    13(A4B1C4) 1.1 5 100
    14(A4B2C3) 1.1 10 90
    15(A4B3C2) 1.1 15 80
    16(A4B4C1) 1.1 20 70
    下载: 导出CSV

    表  2  PU/EP复合材料测试结果

    Table  2.   Test results of PU/EP composite

    Group numberTensile strength/MPaElongation at break/%Impact Strength/(J·m−2)
    1(A1B1C1)22.1214.3020.33
    2(A1B2C2)21.0818.2421.01
    3(A1B3C3)24.2520.1525.15
    4(A1B4C4)20.6523.2227.33
    5(A2B1C2)19.8514.7317.54
    6(A2B2C1)22.3115.2121.23
    7(A2B3C4)24.6723.4525.33
    8(A2B4C3)18.2326.5125.55
    9(A3B1C3)23.4414.4518.44
    10(A3B2C4)25.1518.7223.87
    11(A3B3C1)32.3525.3430.40
    12(A3B4C2)21.8926.4224.43
    13(A4B1C4)22.8414.1616.44
    14(A4B2C3)24.5415.7420.45
    15(A4B3C2)29.6420.1426.88
    16(A4B4C1)21.8930.4123.58
    下载: 导出CSV

    表  3  PU/EP复合材料实验设计与力学性能

    Table  3.   Experimental Design and Results of PU/EP composite

    Number R Dosage/wt% Temperature/℃ Tensile strength/MPa Elongation at break/% Impact Strength/(J·m−2)
    1 1.0 20 70 21.75 28.04 19.87
    2 1.1 15 70 30.50 24.53 27.33
    3 1.1 10 80 22.11 14.24 15.53
    4 1.1 15 90 31.63 23.88 24.02
    5 1.0 20 90 23.53 28.15 18.67
    6 0.9 15 70 29.96 25.04 22.43
    7 0.9 15 90 28.13 24.32 23.33
    8 1.0 15 80 31.14 25.37 28.35
    9 1.0 15 80 31.03 25.21 28.87
    10 0.9 20 80 22.89 27.42 20.58
    11 1.0 15 80 30.76 25.30 29.33
    12 1.0 15 80 32.35 26.21 30.40
    13 1.0 10 90 20.66 13.21 13.24
    14 1.1 20 80 27.23 29.25 20.67
    15 0.9 10 80 21.89 12.41 13.24
    16 1.0 15 80 30.80 24.87 29.86
    17 1.0 10 70 21.61 13.44 12.67
    下载: 导出CSV

    表  4  回归方差分析

    Table  4.   Analysis of Regression Variance

    Source Sum of squares Freedom Mean square F P
    Model 306.82 9 34.09 73.59 <0.0001
    A 9.25 1 9.25 19.96 0.0029
    B 10.42 1 10.42 22.49 0.0021
    C 0.002113 1 0.002113 0.00456 0.9480
    AB 4.24 1 4.24 9.16 0.0192
    AC 2.19 1 2.19 4.73 0.0662
    BC 1.86 1 1.86 4.02 0.0849
    A2 0.24 1 0.24 0.53 0.4915
    B2 264.56 1 264.56 571.10 <0.0001
    C2 8.27 1 8.27 17.86 0.0039
    Residual 3.24 7 0.46
    Misfit term 1.54 3 0.51 1.20 0.4169
    Error 1.71 4 0.43
    Sum 310.06 16
    Notes: F-value is the statistic of the F-test; P-value is a constant criterion in hypothesis testing
    下载: 导出CSV

    表  5  回归方差分析(断裂伸长率)

    Table  5.   Regression analysis of variance (elongation at break)

    Source Sum of squares Freedom Mean square F P
    Model 521.39 9 57.93 104.94 <0.0001
    A 0.9180 1 0.9180 1.66 0.2382
    B 443.42 1 443.42 803.24 <0.0001
    C 0.2775 1 0.2775 0.5027 0.5012
    AB 0.00001 1 0.00001 0.00001 1.0000
    AC 0.0012 1 0.0012 0.0022 0.9637
    BC 0.0289 1 0.0289 0.0524 0.8256
    A2 0.7243 1 0.7243 1.31 0.2897
    B2 72.42 1 72.42 131.18 <0.0001
    C2 1.20 1 1.20 2.18 0.1832
    Residual 3.86 7 0.5520
    Incoherent orientation 2.88 3 0.9602 3.90 0.1106
    Error 0.9837 4 0.2459
    Total 525.26 16
    下载: 导出CSV

    表  6  回归方差分析(冲击韧性)

    Table  6.   Regression analysis of variance (impact toughness)

    SourceSum of squaresFreedomMean squareFP
    Model604.41967.16109.85<0.0001
    A7.9417.9412.990.0087
    B78.81178.81128.91<0.0001
    C1.1611.161.890.2116
    AB1.2111.211.980.2023
    AC4.4314.437.250.0310
    BC0.783210.78321.280.2950
    14.35114.3523.470.0019
    421.981421.98690.23<0.0001
    44.16144.1672.23<0.0001
    Residual4.2870.6114
    Incoherent orientation1.6930.56230.86750.5276
    Error2.5940.6482
    Total608.6916
    下载: 导出CSV
  • [1] MA Y, ZHANG Y, LIU J, et al. Self-Healing Epoxy Coating Modified by Double-Walled Microcapsules Based Polyurea for Metallic Protection[J]. Key Engineering Materials, 2019, 821: 313-320. doi: 10.4028/www.scientific.net/KEM.821.313
    [2] 马衍轩, 宋晓辉, 于霞, 等. 海工钢筋环氧涂层的多尺度结构设计与防护性能调控研究进展[J/OL][J]. 材料导报, 2023, (24): 1-26.

    MA Y, SONG X, YU X, et al. Research progress on multi-scale structural design and protective performance control of epoxy coatings for marine steel reinforcement[J]. Material Guide, 2023, (24): 1-26(in Chinese).
    [3] 袁玉环, 左进霞, 彭聪, 等. 聚氨酯/纳米SiO2改性碳纤维增强环氧树脂复合材料界面性能[J]. 复合材料学报, 2023, 40(11): 6073-6086.

    YUAN Y, ZUO J, PENG C, et al. Polyurethane/Nano SiO_ Interface properties of modified carbon fiber reinforced epoxy resin composite materials[J]. Journal of Composite Materials, 2023, 40(11): 6073-6086(in Chinese).
    [4] MAROUF B T, MAI Y W, BAGHERI R, et al. Toughening of Epoxy Nanocomposites: Nano and Hybrid Effects[J]. Polymer Reviews, 2016, 56(1): 70-112. doi: 10.1080/15583724.2015.1086368
    [5] NEVES R M, ORNAGHI H L, ZATTERA A J, et al. Toughening Epoxy Resin with Liquid Rubber and Its Hybrid Composites: A Systematic Review[J]. Journal of Polymer Research, 2022, 29(8): 340. doi: 10.1007/s10965-022-03195-z
    [6] JAYAN J S, SARITHA A, JOSEPH K. Innovative Materials of This Era for Toughening the Epoxy Matrix: A Review[J]. Polymer Composites, 2018, 39(S4): E1959-E1986.
    [7] MERZ E H, CLAVER G C, BAER M. Studies on Heterogeneous Polymeric Systems[J]. Journal of Polymer Science, 1956, 22(101): 325-341. doi: 10.1002/pol.1956.1202210114
    [8] AMOS J L. The SPE International Award Address—1973 the Development of Impact Polystyrene–A Review[J]. Polymer Engineering & Science, 1974, 14(1): 1-11.
    [9] 李瑜, 邓金飞, 孙昭宜, 等. 端氨基聚硫橡胶增韧改性环氧树脂[J]. 高分子材料科学与工程, 2019, 35(6): 100-104.

    LI Y, DENG J, SUN Z, et al. Modified epoxy resin toughened by amino terminated polysulfide rubber[J]. Polymer Material Science and Engineering, 2019, 35(6): 100-104(in Chinese).
    [10] WANG J F, ZHANG X H, JIANG L, et al. Advances in Toughened Polymer Materials by Structured Rubber Particles[J]. Progress in Polymer Science, 2019, 98: 101160. doi: 10.1016/j.progpolymsci.2019.101160
    [11] GAO Y L, SUN L Y, CHEN P C, et al. A stretch hardening self-assembly strategy inspired by natural rubber for degradable, recyclable and self-repairing polyurethane elastomers, Polymer Degradation and Stability, Volume 215, 2023, 110441, ISSN 0141-3910.
    [12] D M, TISS L, D J, et al. Protective films on complex substrates of thermoplastic and cellular elastomers: Prospective applications to rubber, nylon and cork, Surface and Coatings Technology, Volume 442, 2022, 128405, ISSN 0257-8972.
    [13] 姚佳伟, 冯瑞瑄, 牛一凡, 等. 纳米碳材料/热塑性树脂层间增韧热固性树脂基复合材料研究进展[J]. 复合材料学报, 2022, 39(2): 528-543.

    YAO J, FENG R, NIU Y, et al. Research progress in nanocarbon materials/thermoplastic resin interlayer toughening thermosetting resin based composites[J]. Journal of Composite Materials, 2022, 39(2): 528-543 (in Chinese).
    [14] 李泽宇, 邓夏玲, 韩威, 等. 高韧性和自修复的壳聚糖-聚丙烯酸-MXene导电水凝胶及其压力传感性能[J/OL]. 复合材料学报, 1-10

    2023-12-13]. LI Z, DENG X, HANG W, et al. Chitosan polyacrylic acid MXene conductive hydrogel with high toughness and self-healing and its pressure sensing properties[J/OL]. Journal of Composite Materials, 2022, 39(02): 528-543 (in Chinese).
    [15] P P, PUGLIA D, AL M, et al. Elastomer/thermoplastic Modified Epoxy Nanocomposites: The Hybrid Effect of 'Micro' and 'Nano' Scale[J]. Materials Science & Engineering R-Reports, 2017, 116: 1-29.
    [16] CHEN D, LI J, YUAN Y, et al. A new strategy to improve the toughness of epoxy thermosets by introducing the thermoplastic epoxy, Polymer, Volume 240, 2022, 124518, ISSN 0032-3861.
    [17] 翟乐, 吉海峰, 姚艳梅, 等. 利用聚丙烯酸正丁酯@聚甲基丙烯酸甲酯核/壳结构聚合物增韧氰酸酯树脂[J]. 材料导报, 2019, 33(4): 705-708.

    ZHAI Y, JI H, YAO Y, et al. Toughening of cyanate ester resin using poly (n-butyl acrylate) @ poly (methyl methacrylate) core/shell structure polymer[J]. Material Guide, 2019, 33(4): 705-708(in Chinese).
    [18] SHENG W, MEHMET C, Kali B, et al. The effect of hygrothermal ageing on the delamination of Carbon/epoxy laminates with Core-shell rubber nanoparticle and Micro-fibre thermoplastic veil toughening, Composites Part A: Applied Science and Manufacturing, Volume 171, 2023, 107576, ISSN 1359-835X.
    [19] MOUSAVI S R, ESTAJI S, JAVIDI M R, et al. Toughening of Epoxy Resin Systems Using Core-Shell Rubber Particles: A Literature Review[J]. Journal of Materials Science, 2021: 1-23.
    [20] JAWAD M, AQSA A, MUHAMMAD H, et al. Electrophoretic deposition of moringa loaded chitosan coatings on Mg: A study on antibacterial properties and degradation kinetics, Materials Letters, Volume 354, 2024, 135430, ISSN 0167-577X.
    [21] CHEN S F, Xu Z J, ZHANG D H. Synthesis and Application of Epoxy-ended Hyperbranched Polymers[J]. Chemical Engineering Journal, 2018, 343: 283-302. doi: 10.1016/j.cej.2018.03.014
    [22] SANTIAGO D, SERRA A. Enhancement of Epoxy Thermosets with Hyperbranched and Multiarm Star Polymers: A Review[J]. Polymers, 2022, 14(11): 2228. doi: 10.3390/polym14112228
    [23] 张雅, 柴春鹏, 罗运军, 等. 超支化聚酯基二茂铁/环氧树脂复合材料的制备及性能[J]. 复合材料学报, 2013, 30(6): 48-53.

    ZHANG Y, CAHI C, LUO Y, et al. Preparation and properties of hyperbranched polyester based ferrocene/epoxy resin composite materials[J]. Journal of Composite Materials, 2013, 30(6): 48-53(in Chinese).
    [24] K D, M D. Network structure formation during crosslinking of organic coating systems, Progress in Polymer Science, Volume 25, Issue 9, 2000, Pages 1215-1260, ISSN 0079-6700.
    [25] 张代军, 包建文, 钟翔屿, 等. 聚醚砜超细纤维无纺布层间增韧碳纤维/环氧树脂复合材料制备与表征[J]. 复合材料学报, 2022, 39(8): 3767-3775.

    ZHANG D, BAO J, ZHONG X, et al. Preparation and characterization of polyethersulfone ultrafine fiber non-woven fabric interlayer toughened carbon fiber/epoxy resin composite materials[J]. Journal of Composite Materials, 2022, 39(8): 3767-3775(in Chinese).
    [26] FAROOQ U, TEUWEN J, DRANSFELD C. Toughening of Epoxy Systems with Interpenetrating Polymer Network (IPN): A Review[J]. Polymers, 2020, 12(9): 1908. doi: 10.3390/polym12091908
    [27] LIGON-AUER S C, SCH M, GOR C, et al. Toughening of Photo-Curable Polymer Networks: A Review[J]. Polymer Chemistry, 2016, 7(2): 257-286. doi: 10.1039/C5PY01631B
    [28] CAI M, LIN Q, LI W, et al. Phen@TiO2 modified epoxy resin/polyacrylate IPN composite coating towards wear/corrosion resistance and intelligent self-repairing/diagnosis, Progress in Organic Coatings, Volume 173, 2022, 107207, ISSN 0300-9440.
    [29] WANG S. , ZHAO H. Low Temperature Nanoindentation: Development and applications[J]. Micromachines, 2020, 11(4): 407. doi: 10.3390/mi11040407
    [30] PHARR G M, OLIVER W C, BROTZEN F R. On the Generality of the Relationship Among Contact Stiffness, Contact Area, and Elastic Modulus During Indentation[J]. Journal of Materials Research, 1992, 7(3): 613-617. doi: 10.1557/JMR.1992.0613
  • 加载中
计量
  • 文章访问数:  52
  • HTML全文浏览量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-12
  • 修回日期:  2024-02-28
  • 录用日期:  2024-03-02
  • 网络出版日期:  2024-04-09

目录

    /

    返回文章
    返回