留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微胶囊/脱硫石膏相变储能复合材料的制备与性能

刘凤利 白建侠 刘俊华 李俏莉

刘凤利, 白建侠, 刘俊华, 等. 微胶囊/脱硫石膏相变储能复合材料的制备与性能[J]. 复合材料学报, 2023, 42(0): 1-9.
引用本文: 刘凤利, 白建侠, 刘俊华, 等. 微胶囊/脱硫石膏相变储能复合材料的制备与性能[J]. 复合材料学报, 2023, 42(0): 1-9.
LIU Fengli, BAI Jianxia, LIU Junhua, et al. Preparation and properties of phase change energy storage composite with microcapsules and desulfurized gypsum[J]. Acta Materiae Compositae Sinica.
Citation: LIU Fengli, BAI Jianxia, LIU Junhua, et al. Preparation and properties of phase change energy storage composite with microcapsules and desulfurized gypsum[J]. Acta Materiae Compositae Sinica.

微胶囊/脱硫石膏相变储能复合材料的制备与性能

基金项目: 河南省科技攻关项目(212102310565);河南省高等学校重点科研项目(21B560008);固废资源化利用与节能建材国家重点实验室开放基金资助项目(SWR-2020-007)
详细信息
    通讯作者:

    刘凤利,博士,副教授,硕士生导师,研究方向为相变储能建筑材料、生态建筑材料、固废资源化利用 E-mail:lfl@henu.edu.cn

  • 中图分类号: TU599;TB332

Preparation and properties of phase change energy storage composite with microcapsules and desulfurized gypsum

Funds: Scientific and Technological Breakthrough Foundation of Henan Province (212102310565); Key Scientific Research Projects of Universities in Henan Province (21B560008); State Key Laboratory of Solid Waste Resource Utilization and Energy Saving Building Materials (SWR-2020-007)
  • 摘要: 以相变微胶囊(MPCM)为储能基元与脱硫石膏复合,研究了MPCM对脱硫石膏基复合材料力学性能、热性能和热循环稳定性的影响规律。结果表明:MPCM的潜热储能作用可调节料浆的水化温升,起到缓凝作用,同时赋予复合材料储能调温功效;然而掺入MPCM对复合材料强度不利。MPCM掺量为50wt%时复合材料综合性能较好。此时,相变温度24.51℃,相变焓28.47 J·g−1,储热温峰和温峰出现时间较纯石膏分别降低和延迟了6.4℃、980 s,储热控温作用明显;导热系数0.451 W·(m·K)−1;28天抗压强度25.05 MPa;250次冷热循环质量损失率、相变温度变化率和相变焓变化率分别为0.67%、0.08%和2.3%,热循环稳定性良好。该复合材料力学性能、热性能和热循环稳定性良好,在建筑储能围护体系中应用前景广阔。

     

  • 图  1  癸酸-硬脂酸@二氧化硅(CA-SA@SiO2)相变微胶囊的DSC曲线

    Figure  1.  DSC curve of Capric acid - stearate @ silica (CA-SA@SiO2) phase change microcapsules

    Tc—Peak cooling temperature; ΔHc—Latent heat of cooling phase transition; Tm—Peak heating temperature; ΔHm—Latent heat of heating phase transition

    图  2  SEM图像: (a) 相变微胶囊(MPCM);((b), (c))相变储能石膏

    Figure  2.  SEM images: (a) Micro-encapsulated phase change materials (MPCM); ((b),(c)) Phase change energy storage gypsum

    图  3  相变储能石膏的28天抗压强度

    Figure  3.  The 28-day compressive strength of phase change energy storage gypsum

    图  4  不同MPCM掺量下相变储能石膏早期内部水化温升

    Figure  4.  Early hydration temperature rise of phase change energy storage gypsum under different MPCM dosages

    图  5  MPCM掺量50wt%、70wt%时浆体形态对比图

    Figure  5.  Comparison of slurry morphology at 50wt% and 70wt%MPCM dosage

    图  6  不同MPCM掺量相变储能石膏的导热系数

    Figure  6.  Thermal conductivity of phase change energy storage gypsum with different MPCM dosages

    图  7  不同MPCM掺量相变储能石膏的储/放热性能

    Figure  7.  Thermal storage/release performance of phase change energy storage gypsum with different MPCM dosages

    图  8  相变储能石膏不同冷热循环次数对应质量损失率

    Figure  8.  Mass loss rate of phase change energy storage gypsum under different cold-hot cycles

    图  9  冷热循环前后相变储能石膏的DSC曲线

    Figure  9.  DSC curves of phase change energy storage gypsum before and after cold-hot cycles

    图  10  冷热循环前后相变储能石膏的TG曲线

    Figure  10.  TG curve of phase change energy storage gypsum before and after cold-hot cycles

    表  1  粉煤灰的化学组成

    Table  1.   Chemical composition of fly ash wt%

    SiO2 Al2O3 CaO SO3 Fe2O3 MgO TiO2 Na2O MnO K2O
    47.84 30.43 4.81 1.33 5.12 0.50 1.63 0.42 1.50
    下载: 导出CSV

    表  2  改性脱硫石膏基体配比

    Table  2.   Mix ratio of modified phase desulfurized gypsum matrix wt%

    GypsumCementFAQuicklimeHPMCSPRetarder
    69.9815.329.175.530.150.050.28
    Notes: The dosage of HPMC, SP and retarder is calculated according to the quality of powder material including gypsum, cement, FA and quicklime.
    下载: 导出CSV

    表  3  改性脱硫石膏基体物理力学性能

    Table  3.   Physical and mechanical properties of modified phase desulfurized gypsum matrix

    Apparent density/kg·m−3 Water absorption/% Thermal conductivity/(W·(m·K)−1) Compressive strength/MPa
    1 914 16.76 0.910 48.81
    下载: 导出CSV

    表  4  冷热循环前后相变储能石膏的热物性

    Table  4.   Thermal properties of phase change energy storage gypsum before and after cold-hot cycles

    Phase change energy storage gypsum with 50wt% MPCM Melt Solidify
    Tm/℃ Hm/(J·g−1) Tc/℃ Hc/(J·g−1)
    0 thermal cycle 24.51 28.47 25.10 27.38
    250 thermal cycles 24.53 27.84 25.08 26.76
    Notes: Tm—Peak heating temperature; Hm—Enthalpy of fusion; Tc—Peak cooling temperature; Hc—Solidification enthalpy.
    下载: 导出CSV
  • [1] 张寅平, 胡汉平, 孔祥东, 等. 相变贮能 理论和应用[M]. 合肥: 中国科学技术大学出版社, 1996.

    ZHANG Y P, HU H P, KONG X D, et al. Phase change energy storage-theory and application[M]. Hefei: Press of University of Science and Technology of China, 1996(in Chinese).
    [2] 吴丽梅, 刘庆欣, 王晓龙, 等. 相变储能材料研究进展[J]. 材料导报, 2021, 35(S1): 501-506.

    WU L M, LIU Q X, WANG X L, et al. Review on phase change energy storage materials[J]. Materials Reports, 2021, 35(S1): 501-506(in Chinese).
    [3] 蹇守卫, 马保国, 金磊, 等. 聚乙二醇-二氧化硅十八烷酸相变壳核结构胶囊的制备[J]. 硅酸盐学报, 2010, 38(04): 711-717.

    JIAN S W, MA B G, JIN L, et al. Preparation of polyethylene glycol-silicon dioxide/stearic acid phase change microencapsulated structures[J]. Journal of the Chinese Ceramic Society, 2010, 38(04): 711-717(in Chinese).
    [4] WANG B, SHI M, YAO H, et al. Preparation and application of low-temperature binary eutectic lauric acid-stearic acidSiO2 phase change microcapsules[J]. Energy and Buildings, 2023, 279: 112706. doi: 10.1016/j.enbuild.2022.112706
    [5] LU W, YU A, DONG H, et al. High-performance palmityl palmitate phase change microcapsules for thermal energy storage and thermal regulation[J]. Energy, 2023, 274: 127336. doi: 10.1016/j.energy.2023.127336
    [6] 信翔宇, 陈广立, 张秀芝, 等. 石膏固废再生利用研究进展[J]. 中国粉体技术, 2023, 29(1): 10-18.

    XIN X Y, CHEN G L, ZHANG X Z, et al. Research progress on recycling of gypsum solid waste[J]. China Powder Science and Technology, 2023, 29(1): 10-18(in Chinese).
    [7] 刘云霄, 何睿, 邓云鸽, 等. 改性脱硫建筑石膏基相变储能复合材料的性能研究[J]. 新型建筑材料, 2017, 44(12): 5-7+15.

    LIU Y X, HE R, DENG Y G, et al. Properties investigation on modified FGD gypsum based phase change insulating composite material[J]. New Building Materials, 2017, 44(12): 5-7+15(in Chinese).
    [8] 彭犇, 岳昌盛, 邱桂博, 等. 相变储能材料的最新研究进展与应用[J]. 材料导报, 2018, 32(S1): 248-252.

    PENG B, YUE C S, QIU G B, et al. The recent research progress and application of phase change and energy storage materials[J]. Materials Reports, 2018, 32(S1): 248-252(in Chinese).
    [9] ZHANG Y, TAO W, WANG K, et al. Analysis of thermal properties of gypsum materials incorporated with microencapsulated phase change materials based on silica[J]. Renewable Energy, 2020, 149: 400-408. doi: 10.1016/j.renene.2019.12.051
    [10] RATHORE P K S, SHUKLA S K, GUPTA N K. Potential of microencapsulated PCM for energy savings in buildings: a critical review[J]. Sustainable Cities and Society, 2020, 53: 101884. doi: 10.1016/j.scs.2019.101884
    [11] HENIEGAL A M, IBRAHIM O M O, FRAHAT N B, et al. New techniques for the energy saving of sustainable buildings by using phase change materials[J]. Journal of Building Engineering, 2021, 41: 102418. doi: 10.1016/j.jobe.2021.102418
    [12] 曾令可, 王慧, 程小苏, 等. 相变储能石膏板制备和性能的研究[J]. 新型建筑材料, 2012, 39(12): 27-29.

    ZENG L K, WANG H, CHENG X S, et al. Research on the preparation and properties of phase change thermal storage plasterboard[J]. New Building Materials, 2012, 39(12): 27-29(in Chinese).
    [13] 魏婷, 许芳芳, 叶志林, 等. 十八烷微胶囊/石膏板复合相变材料的性能研究[J]. 新型建筑材料, 2016, 43(05): 95-97.

    WEI T, XU F F, YE Z L, et al. Performances study on the phase change plasterboards with octadecane microcapsules[J]. New Building Materials, 2016, 43(05): 95-97(in Chinese).
    [14] 陈通. 相变微胶囊及其石膏基复合材料的力学性能表征[D]. 浙江: 浙江工业大学, 2017.

    CHEN T. Characterization of the mechanical properties of microencapsulated phase change materials and gypsum-based composite[D]. Zhejiang: Journal of Zhejiang University of Technology, 2017(in Chinese).
    [15] ERREBAI F B, CHIKH S, DERRADJI L, et al. Optimum mass percentage of microencapsulated PCM mixed with gypsum for improved latent heat storage[J]. Journal of Energy Storage, 2021, 33: 101910. doi: 10.1016/j.est.2020.101910
    [16] 赵亮, 王岩, 王刚, 等. 石蜡@糊化面粉相变微胶囊及其在建材中的应用[J]. 化工进展, 2022, 41(5): 2566-2573.

    ZHAO L, WANG Y, WANG G, et al. Application of paraffin@gelatinized flour phase change microcapsule in building materials[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2566-2573(in Chinese).
    [17] SRINIVASARAONAIK B, SINGH L P, SINHA S, et al. Studies on the mechanical properties and thermal behavior of microencapsulated eutectic mixture in gypsum composite board for thermal regulation in the buildings[J]. Journal of Building Engineering, 2020, 31: 101400. doi: 10.1016/j.jobe.2020.101400
    [18] 赵亮, 方向晨, 黄新露, 等. 相变储能材料的制备及其在石膏基体中的应用研究[J]. 新型建筑材料, 2020, 47(03): 135-138.

    ZHAO L, FANG X C, HUANG X L, et al. Preparation of phase change storage materials and application in gypsum matrix[J]. New Building Materials, 2020, 47(03): 135-138(in Chinese).
    [19] 张家玮, 黄玮, 黄大建, 等. 基于微孔漂珠的相变微胶囊制备及其对砂浆力学和热性能影响[J]. 复合材料学报, 2023, 40(8): 4703-4719.

    ZHANG J W, HUANG W, HUANG D J, et al. Preparation of phase change microcapsules based on microporous fly-ash cenosphere and its effect on the mechanical and thermal properties of mortar[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4703-4719(in Chinese).
    [20] 钱国栋, 王民权, 林久令, 等. SiO2凝胶玻璃中有机光学活性物质的荧光特性和热稳定性[J]. 硅酸盐通报, 1999, (01): 19-21+30.

    QIAN G D, WANG M Q, LIN J L, et al. Thermal stability and fluorescence properties of organic photoactive species doped in SiO2 gel glasses[J]. Bulletin of the Chinese Ceramic Society, 1999, (01): 19-21+30(in Chinese).
    [21] 桑国臣, 樊敏, 崔晓玲, 等. 压力成型相变储能砂浆的热性能与力学性能[J]. 建筑材料学报, 2019, 22(05): 693-699.

    SANG G C, FAN M, CUI X L, et al. Thermal and mechanical properties of phase-change thermal energy storage mortar based on compression forming method[J]. Journal of Building Materials, 2019, 22(05): 693-699(in Chinese).
    [22] 国家标准化管理委员会. 建筑石膏: GB/T 9776-2022[S]. 北京: 中国标准出版社, 2022.

    National standardization committee. Building Gypsum: GB/T 9776-2022[S]. Beijing: Standards Press of China, 2022(in Chinese).
    [23] 中华人民共和国住房和城乡建设部. 建筑隔墙用轻质条板通用技术要求: JG/T 169-2016[S]. 北京: 中国标准出版社, 2016.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. General technical requirements of light weight panel used for building partition: JG/T 169-2016[S]. Beijing: Standards Press of China, 2016(in Chinese).
    [24] 库尔班江·乌丝曼, 戴晓业, 史琳. 相变材料的特点及热物性分析[J]. 东北大学学报(自然科学版), 2023, 44(04): 510-516.

    WUSIMAN K E B J, DAI X Y, SHI L. Characteristics of phase change materials and analvsis of thermal properties[J]. Journal of Northeastern University(Natural Science Edition), 2023, 44(04): 510-516(in Chinese).
    [25] 孟琦. 相变墙体相变层传热特性研究[D]. 内蒙古: 内蒙古工业大学, 2021.

    MENG Q. Research on heat transfer characteristics of phase change layer in phase change wall[D]. Inner Mongolia: Inner Mongolia University of Technology, 2021(in Chinese).
    [26] ALBA-SIMIONESCO C, COASNE B, DOSSEH G, et al. Effects of confinement on freezing and melting[J]. Journal of Physics Condensed Matter an Institute of Physics Journal, 2006, 18(6): R15.
    [27] 刘丽娟. 重力驱动分区强化冷却墙体传热特性与工程简化模型研究[D]. 武汉: 华中科技大学, 2022.

    LIU L J. Study of the thermal performance of a dual-cavity wall with gravity-driven cooling mechanism by simulation and its simplified modelling for engineering application[D]. Wuhan: Huazhong University of Science and Technology, 2022(in Chinese).
  • 加载中
计量
  • 文章访问数:  106
  • HTML全文浏览量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-24
  • 修回日期:  2023-11-26
  • 录用日期:  2023-12-01
  • 网络出版日期:  2023-12-20

目录

    /

    返回文章
    返回