留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PVA/BNC复合材料的人工耳廓的制备与性能

黄丽娜 陈琳 洪枫

黄丽娜, 陈琳, 洪枫. 基于PVA/BNC复合材料的人工耳廓的制备与性能[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 黄丽娜, 陈琳, 洪枫. 基于PVA/BNC复合材料的人工耳廓的制备与性能[J]. 复合材料学报, 2024, 42(0): 1-10.
HUANG Lina, CHEN Lin, HONG Feng. Preparation and properties of artificial auricles based on PVA/BNC composites[J]. Acta Materiae Compositae Sinica.
Citation: HUANG Lina, CHEN Lin, HONG Feng. Preparation and properties of artificial auricles based on PVA/BNC composites[J]. Acta Materiae Compositae Sinica.

基于PVA/BNC复合材料的人工耳廓的制备与性能

详细信息
  • 中图分类号: R318.08;TB332

Preparation and properties of artificial auricles based on PVA/BNC composites

  • 摘要: 耳廓再造的关键是实现植入材料与天然组织间的生物力学适配,然而迄今尚未找到一种理想的耳廓替代物。本研究将细菌纳米纤维素(Bacterial nanocellulose, BNC)匀浆加至不同浓度的聚乙烯醇(Polyvinyl alcohol, PVA)水溶液中,通过冻融法使两者物理交联形成兼具高弹柔韧性和高力学强度的PVA/BNC复合材料,并对其理化性能和细胞相容性进行表征。结果表明:该材料具有高吸水性、低溶胀比,较高的韧性、弹性和缝合强度等特点,最大压缩模量可达到6.98 ± 0.49 MPa,与天然耳廓组织的生物力学相适配。最大缝合强度可达7.06 ± 0.33 N,完全满足临床缝合需求。BNC的加入促进了细胞在材料表面的粘附、生长和增殖,使PVA/BNC复合材料具有更高的细胞密度和活力,是一种很有潜力的人工耳廓材料。

     

  • 图  1  PVA、PVA/BNC材料的宏观、微观形貌

    Figure  1.  Macroscopic and microscopic morphologies of PVA and PVA/BNC materials (a) Macroscopic morphology of PVA and PVA/BNC materials with different concentrations; (b) Diagram of an auricular sample; (c) Scanning electron microscope microscopic topography of materials

    图  2  材料的基本理化性质

    (a)不同浓度PVA、PVA/BNC材料的红外光谱图;(b)含水率;(c)吸水率;(d)饱和溶胀率;(e)X射线衍射图谱

    Figure  2.  Basic physical and chemical properties of materials

    (a) Fourier transform infrared spectra of PVA and PVA/BNC materials with different concentrations;(b) Moisture content; (c) Water absorption rate;(d) Saturated swelling rate; (e) X-ray diffraction pattern

    图  3  PVA和PVA/BNC材料的压缩力学性能与缝合强度

    (a)不同浓度PVA、PVA/BNC材料的压缩强度;(b)压缩模量;(c)压缩应力-应变曲线;(d)16%PVA和PVA/BNC循环压缩应力-应变曲线;(e)循环压缩能量耗散与能量损耗系数;(f)缝合强度

    Figure  3.  Compressive mechanical properties and suture strength of PVA and PVA/BNC materials

    (a) Compressive strength of PVA and PVA/BNC materials with different concentrations; (b) Compressive modulus; (c) Compressive stress-strain curves; (d) 16% PVA and PVA/BNC cyclic compressive stress-strain curves; (e) Cyclic compression energy dissipation and energy dissipation coefficient;(f) Suture retention

    图  4  PVA、PVA/BNC材料的拉伸力学性能

    (a)各PVA、PVA/BNC材料的拉伸强度;(b)拉伸模量;(c)断裂伸长率;(d)拉伸应力-应变曲线;(e)16%PVA和PVA/BNC循环拉伸应力-应变曲线;(f)循环拉伸韧性与能量损耗系数

    Figure  4.  Tensile mechanical properties of PVA and PVA/BNC materials

    (a) Tensile strength of PVA and PVA/BNC materials; (b) Tensile modulus; (c) Elongation at break; (d) Tensile stress-strain curve; (e) 16% PVA and PVA/BNC cyclic tensile stress-strain curves; (f) Cyclic tensile toughness and energy dissipation coefficient

    图  5  小鼠成纤维细胞的相容性

    (a) CCK-8实验结果;(b)浸提液培养的细胞存活率;(c)浸提液培养L929细胞1、2、3天后细胞荧光图;(d)电镜显示细胞在材料上生长1、3、5天后的形态图

    Figure  5.  Cytocompatibility of mouse fibroblasts

    (a) CCK-8 experimental results; (b) Cell viability of extract culture; (c) Cell fluorescence pattern of L929 cells after culture in extract for 1, 2 and 3 days; (d) Electron microscopy showing morphology of cells after 1, 3, and 5 days of growth on the material

    表  1  孔隙率与比表面积测试结果

    Table  1.   Porosity and specific surface area test results

    Sample Skeletal density/(g·cm−3) Apparent density/(g·cm−3) Porosity/% Specific surface area/(m2·g−1)
    BNC
    16%PVA
    16%PVA/BNC
    1.056 ± 0.017
    1.219 ± 0.006
    1.207 ± 0.005
    0.009
    0.909
    0.455
    99.17
    25.47
    62.27
    58.98
    24.96
    26.48
    Notes: BNC—Bacterial nanocellulose; PVA—Polyvinyl alcohol
    下载: 导出CSV

    表  2  材料的结晶度

    Table  2.   Crystallinity of materials

    SampleCrystallinity/%
    BNC44.73 ± 5.07
    8%PVA34.08 ± 4.36
    12%PVA34.66 ± 9.87
    16%PVA35.80 ± 8.60
    20%PVA36.15 ± 6.28
    8%PVA/BNC37.38 ± 7.52
    12%PVA/BNC38.39 ± 7.88
    16%PVA/BNC45.68 ± 3.94
    20%PVA/BNC40.07 ± 1.47
    下载: 导出CSV
  • [1] JIANG C, ZHAO C, CHEN B, et al. Auricular reconstruction using Medpor combined with different hearing rehabilitation approaches for microtia[J]. Acta Otolaryngol, 2021, 141(6): 572-578. doi: 10.1080/00016489.2021.1900601
    [2] SHIEH S J, TERADA S, VACANTI J P. Tissue engineering auricular reconstruction: in vitro and in vivo studies[J]. Biomaterials, 2004, 25(9): 1545-1557. doi: 10.1016/S0142-9612(03)00501-5
    [3] PARK J Y, CHOI Y J, SHIM J H, et al. Development of a 3D cell printed structure as an alternative to autologs cartilage for auricular reconstruction[J]. J Biomed Mater Res B Appl Biomater, 2017, 105(5): 1016-1028. doi: 10.1002/jbm.b.33639
    [4] 王艺蒙. 力学仿生耳软骨组织工程支架的3D打印及应用基础研究 [D]. 北京: 北京协和医学院, 2022.

    WANG Yimeng. Basic research on 3D printing and application of mechanical bionic ear cartilage tissue engineering scaffold [D]. Beijing: Peking Union Medical College, 2022(in Chinese).
    [5] FENG P, ZHAO R, TANG W, et al. Structural and Functional Adaptive Artificial Bone: Materials, Fabrications, and Properties[J]. Advanced Functional Materials, 2023, 33: 2214726. doi: 10.1002/adfm.202214726
    [6] 张如鸿, 曹谊林. 全耳再造的过去、现在和将来[J]. 组织工程与重建外科, 2005, (02): 109-114.

    ZHANG Ruhong, CAO Yilin. The past, present and future of whole ear reconstruction[J]. Journal of Tissue Engineering and Reconstructive Surgery, 2005, (02): 109-114(in Chinese).
    [7] HAN Y, LI C, CAI Q, et al. Studies on bacterial cellulose/poly(vinyl alcohol) hydrogel composites as tissue-engineered corneal stroma[J]. Biomed Mater, 2020, 15: 035022. doi: 10.1088/1748-605X/ab56ca
    [8] SVENSSON A, NICKLASSON E, HARRAH T, et al. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage[J]. Biomaterials, 2005, 26(4): 419-431. doi: 10.1016/j.biomaterials.2004.02.049
    [9] 唐敬玉, 包露涵, 李雪, 等. 细菌纳米纤维素与聚乙烯醇复合水凝胶管的生物相容性表征[J]. 中国组织工程研究, 2017, 21(34): 5474-5480.

    TANG Jingyu, BAO Luhan, LI Xue, et al. Biocompatibility Characterization of Bacterial Nanocellulose and Polyvinyl Alcohol Composite Hydrogel Tubes[J]. Chinese Journal of Tissue Engineering Research, 2017, 21(34): 5474-5480(in Chinese).
    [10] HU G Q, CHEN L, ZHAO S, et al. Mercerization of tubular bacterial nanocellulose for control of the size and performance of small-caliber vascular grafts[J]. Chemical Engineering Journal, 2022, 428: 131104. doi: 10.1016/j.cej.2021.131104
    [11] NIMESKERN L, MARTINEZ A H, SUNDBERG J, et al. Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement[J]. J Mech Behav Biomed Mater, 2013, 22: 12-21. doi: 10.1016/j.jmbbm.2013.03.005
    [12] HU G Q, LI G L, CHEN L, et al. Production of novel elastic bacterial nanocellulose/polyvinyl alcohol conduits via mercerization and phase separation for small-caliber vascular grafts application[J]. International Journal of Biological Macromolecules, 2023, 239.
    [13] WANG J, GAO C, ZHANG Y, et al. Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial[J]. Materials Science and Engineering:C, 2010, 30(1): 214-218. doi: 10.1016/j.msec.2009.10.006
    [14] ZHAO J, TONG H, KIRILLOVA A, et al. A Synthetic Hydrogel Composite with a Strength and Wear Resistance Greater than Cartilage[J]. Advanced Functional Materials, 2022, 32: 2205662. doi: 10.1002/adfm.202205662
    [15] MILLON L E, WAN W K. The polyvinyl alcohol–bacterial cellulose system as a new nanocomposite for biomedical applications[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials, 2006, 79B(2): 245-253. doi: 10.1002/jbm.b.30535
    [16] CHEN G, CHEN L, WANG W, et al. Manufacture of a novel anisotropic bacterial nanocellulose hydrogel membrane by using a rotary drum bioreactor[J]. Carbohydrate Polymers, 2019, 211: 281-288. doi: 10.1016/j.carbpol.2019.01.072
    [17] YANG G, WANG C, HONG F, et al. Preparation and characterization of BC/PAM-AgNPs nanocomposites for antibacterial applications[J]. Carbohydrate Polymers, 2015, 115: 636-642. doi: 10.1016/j.carbpol.2014.09.042
    [18] WAN W K, CAMPBELL G, ZHANG Z F, et al. Optimizing the tensile properties of polyvinyl alcohol hydrogel for the construction of a bioprosthetic heart valve stent[J]. J Biomed Mater Res, 2002, 63(6): 854-861. doi: 10.1002/jbm.10333
    [19] GROULT S, BUDTOVA T. Thermal conductivity/structure correlations in thermal super-insulating pectin aerogels[J]. Carbohydrate Polymers, 2018, 196: 73-81. doi: 10.1016/j.carbpol.2018.05.026
    [20] CHEN Q, ZHANG X, CHEN K, et al. Bilayer Hydrogels with Low Friction and High Load-Bearing Capacity by Mimicking the Oriented Hierarchical Structure of Cartilage[J]. ACS Applied Materials & Interfaces, 2022, 14(46): 52347-52358.
    [21] 郭佩佩, 蒋海越. 颞浅筋膜瓣在整形修复外科领域的临床应用进展[J]. 中华整形外科杂志, 2019, 35(12): 1271-1274. doi: 10.3760/cma.j.issn.1009-4598.2019.12.022

    GUO Peipei, JIANG Haiyue. Clinical application of temporal superficial fascia flap in plastic surgery[J]. Chinese Journal of Plastic Surgery, 2019, 35(12): 1271-1274 (in Chinese). doi: 10.3760/cma.j.issn.1009-4598.2019.12.022
    [22] LUO Y H, LI G L, CHEN L, et al. Preparation and Evaluation of Bacterial Nanocellulose/Hyaluronic Acid Composite Artificial Cornea for Application of Corneal Transplantation[J]. Biomacromolecules, 2023, 24(1): 201-212. doi: 10.1021/acs.biomac.2c01052
    [23] 王森. 高强度大孔聚乙烯醇水凝胶的制备和机理分析 [D]. 大连: 大连理工大学, 2020.

    WANG Sen. Preparation and mechanism analysis of high-strength macroporous polyvinyl alcohol hydrogel [D]. Dalian: Dalian University of Technology, 2020(in Chinese).
    [24] PAN Y S, XIONG D, CHEN X L. Mechanical properties of nanohydroxyapatite reinforced poly(vinyl alcohol) gel composites as biomaterial[J]. Journal of Materials Science, 2007, 42(13): 5129-5134. doi: 10.1007/s10853-006-1264-4
    [25] GRIFFIN M F, PREMAKUMAR Y, SEIFALIAN A M, et al. Biomechanical Characterisation of the Human Auricular Cartilages; Implications for Tissue Engineering[J]. Annals of Biomedical Engineering, 2016, 44(12): 3460-3467. doi: 10.1007/s10439-016-1688-1
    [26] KOSHUT W J, RUMMEL C, SMOOT D, et al. Flaw Sensitivity and Tensile Fatigue of Poly(Vinyl Alcohol) Hydrogels[J]. Macromolecular Materials and Engineering, 2021, 306: 200679.
    [27] NAYYER L, BIECHALL M, SEIFALIAN A M, et al. Design and development of nanocomposite scaffolds for auricular reconstruction[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2014, 10(1): 235-246.
    [28] TANG S, CHI K, XU H, et al. A covalently cross-linked hyaluronic acid/bacterial cellulose composite hydrogel for potential biological applications[J]. Carbohydr Polym, 2021, 252: 117123. doi: 10.1016/j.carbpol.2020.117123
  • 加载中
计量
  • 文章访问数:  53
  • HTML全文浏览量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-19
  • 录用日期:  2024-01-26
  • 网络出版日期:  2024-02-24

目录

    /

    返回文章
    返回