留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柔性电化学传感器的材料选择研究进展

孙已岚 臧霄奉 刘英慧 蒋双钰 张华宇 孔霞

孙已岚, 臧霄奉, 刘英慧, 等. 柔性电化学传感器的材料选择研究进展[J]. 复合材料学报, 2024, 41(5): 2259-2271. doi: 10.13801/j.cnki.fhclxb.20231205.002
引用本文: 孙已岚, 臧霄奉, 刘英慧, 等. 柔性电化学传感器的材料选择研究进展[J]. 复合材料学报, 2024, 41(5): 2259-2271. doi: 10.13801/j.cnki.fhclxb.20231205.002
SUN Yilan, ZANG Xiaofeng, LIU Yinghui, et al. Research progress in material selection of flexible electrochemical sensors[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2259-2271. doi: 10.13801/j.cnki.fhclxb.20231205.002
Citation: SUN Yilan, ZANG Xiaofeng, LIU Yinghui, et al. Research progress in material selection of flexible electrochemical sensors[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2259-2271. doi: 10.13801/j.cnki.fhclxb.20231205.002

柔性电化学传感器的材料选择研究进展

doi: 10.13801/j.cnki.fhclxb.20231205.002
基金项目: 国家自然科学基金 (22001150);山东省自然科学基金项目(ZR2020QB029)
详细信息
    通讯作者:

    孔霞,博士,副教授,硕士生导师,研究方向为半导体材料设计合成及光电传感、催化性质等 E-mail: kongxia_chem@sdust.edu.cn

  • 中图分类号: O649.3;TB332

Research progress in material selection of flexible electrochemical sensors

Funds: National Natural Science Foundation of China (22001150); Natural Science Foundation of Shandong Province (ZR2020QB029)
  • 摘要: 电化学传感器作为传统传感器的一种,具有效率高、响应性好和灵敏度高等优点。而柔性电化学传感器具有这些特点的同时,凭借其优异的柔韧性、拉伸性、可折叠性和电化学稳定性,被广泛应用于医疗卫生、环境监测和食品安全等方面。此外,该类传感器还具有方便携带、成本较低、灵敏度高和选择性好等特点。本文立足于柔性传感器活性材料的选择,从无机材料、有机材料、酶和天然材料入手,通过分析与总结近几年的研究成果,介绍材料的选择对电化学传感器性能的影响,重点阐述了不同材料在柔性电化学传感器方面的制备及应用,表明柔性电化学传感器在生产生活中发挥着不可替代的作用。最后对现阶段柔性传感器的研究应用存在的问题与挑战进行总结,并对其未来发展方向进行展望。

     

  • 图  1  在可弯曲不锈钢丝筛(SSWS)衬底上水热合成ZnO纳米棒的详细步骤[15]

    CE—Counter electrode; RE—Reference electrode; WE—Working electrode; UV—Ultraviolet

    Figure  1.  Detailed procedures for the hydrothermal synthesis of ZnO nanorods on the stainless steel wire sieve (SSWS) substrate[15]

    图  2  (a) 可寻址的纸基光电化学芯片示意图;TiO2/Pt 纳米材料功能化纸基光电化学传感器构建示意图(b)及检测原理((c), (d))[22]

    NPs—Nanoparticles; NTs—Nanotubes; H1—Hairpin probe 1; H2—Hairpin probe 2; HT—Glutaraldehyde; PWE—Bare paper fibers; N-CDs—N-doped carbon dots; TS—Target strand; PS—Primer strand; CEA—Carcinoembryonic antigen

    Figure  2.  (a) Schematic illustration of the addressable paper photoelectrochemical chip; Construction process (b) and detection principle ((c), (d))of TiO2/Pt nanomaterial functionalized paper-based photoelectric chemical sensor[22]

    图  3  Mn-MoS2/热解石墨片(PGS)传感器的制造过程[30]

    Figure  3.  Manufacturing process of Mn-MoS2/pyrolytic graphitesheet (PGS) sensors[30]

    图  4  (a) 铜-金属有机框架材料(Cu-MOF)电化学传感器的多层结构、SEM图像及3D框架结构[38];(b)可定量检测葡萄糖的按钮传感器和其测试程序的3D原理图[40]

    PET—Polyethylene terephthalate; CC—Carbon cloth

    Figure  4.  (a) Multi-layer structure, SEM image and 3D frame structure of Cu-metal organic frameworks (Cu-MOF) electrochemical sensor[38]; (b) 3D schematic diagram of button sensor and its test program that can quantitatively detect glucose[40]

    图  5  共价有机框架/银纳米颗粒/碳布(COF/Ag NPs/CC)的制备及同时测定双酚A (BPA)和双酚S (BPS)的比值电化学传感器的构建示意图[43]

    DPV—Differential pulse voltammetry

    Figure  5.  Schematic illustration for preparation of covalent organic framework/Ag nanoparticles/carbon cloth (COF/Ag NPs/CC) and the construction of ratiometric electrochemical sensor for simultaneous determination for bisphenol A (BPA) and bisphenol S (BPS)[43]

    图  6  玉米烯酮(ZEN)适体传感器的构建和检测示意图[44]

    SPE—Screen-printed electrode

    Figure  6.  Construction and detection schematic diagram of zearalenone (ZEN) aptasensor[44]

    图  7  常见导电高分子的化学结构:(a)聚乙炔;(b)聚吡咯;(c)聚苯胺;(d)聚咔唑;(e)聚噻吩;(f)聚(3, 4-乙烯二氧噻吩);(g)聚亚苯基;(h)聚对苯撑乙烯;(i)聚芴[46]

    Figure  7.  Chemical structures of some common conducting polymers:(a) Polyacetylene; (b) Polypyrrole; (c) Polyaniline; (d) Polycarbazole; (e) Polythiophenes; (f) Poly(3, 4-ethylenedioxythiophene); (g) Polyphenylenes; (h) Poly(phenylene vinylene); (i) Polyfluorene[46]

    图  8  用于检测细菌生物膜的聚吡咯薄膜修饰柔性电化学传感器[54]

    Figure  8.  Flexible electrochemical sensor modified with polypyrrole film for detection of bacterial biofilm[54]

    图  9  ((a), (b))肾上腺素生物传感器的摄影图像/制备原理图[57];(c)可用于检测H2O2的石墨烯-十二烷基苯磺酸(DBSA)薄膜柔性电化学传感器[59]

    rGO—Reduced graphene oxide; PAB—p-aminobenzoic acid

    Figure  9.  ((a), (b)) Photographic image/preparation schematic diagram of adrenaline biosensor[57]; (c) Graphene-dodecyl benzene sulfonic acid (DBSA) thin film flexible electrochemical sensor for detecting H2O2[59]

    图  10  (a)乳酸汗液传感器的摄影图像及制备原理图[63];(b)漆酶固定化工艺示意图[64]

    LOD—Lactate oxidase; PANHS—1-pyrenebutyric acid-N-hydroxysuccinimide ester; GO—Graphene oxide; GA—Glutaraldehyde; Lac—Laccase; PANI—Polyaniline

    Figure  10.  (a) Photographic images and preparation schematicdiagram of lactate sweat sensor[63]; (b) Schematic of laccaseimmobilization process[64]

    图  11  (a)可用于检测抗坏血酸、肾上腺素的生物相容性葡萄糖生物传感器芯片[68];(b)可用于监测肘部、喉部运动的压力-应变传感器[69]

    NFs—Nanofibers

    Figure  11.  (a) Biocompatible glucose biosensor chip for detecting ascorbic acid and epinephrine[68]; (b) Pressure-strain sensor for monitoringelbow and throat movement[69]

  • [1] BARANWAL J, BARSE B, GATTO G, et al. Electrochemical sensors and their applications: A review[J]. Chemosensors, 2022, 10(9): 363. doi: 10.3390/chemosensors10090363
    [2] DEEPAN K, AJAY B, ADRIAN M, et al. MoS2 modified screen printed carbon electrode based flexible electrochemical sensor for detection of copper ions in water[J]. IEEE Sensors Journal, 2023, 23(8): 8146-8153. doi: 10.1109/JSEN.2023.3257188
    [3] ZHANG L, SUN M, JING T, et al. A facile electrochemical sensor based on green synthesis of Cs/Ce-MOF for detection of tryptophan in human serum[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648: 129225. doi: 10.1016/j.colsurfa.2022.129225
    [4] LI Z, WANG Y, FAN Z, et al. A dual-function wearable electrochemical sensor for uric acid and glucose sensing in sweat[J]. Biosensors, 2023, 13(1): 105. doi: 10.3390/bios13010105
    [5] PAN L, XIE Y, YANG H, et al. Flexible magnetic sensors[J]. Sensors, 2023, 23(8): 4083. doi: 10.3390/s23084083
    [6] WEN N, ZHANG L, JIANG D, et al. Emerging flexible sensors based on nanomaterials: Recent status and applications[J]. Journal of Materials Chemistry A, 2020, 8: 25499-25527.
    [7] LI S, ZHOU X, DONG Y, et al. Flexible self-repairing materials for wearable sensing applications: Elastomers and hydrogels[J]. Macromolecular Rapid Communications, 2020, 41(23): e2000444. doi: 10.1002/marc.202000444
    [8] ZAZOUM B, BATOO K, KHAN M. Recent advances in flexible sensors and their applications[J]. Sensors, 2022, 22(12): 4653. doi: 10.3390/s22124653
    [9] 孙誉铢, 张立兵, 张瑞中. 二硫化钼的制备及其电化学传感应用研究进展[J]. 化学试剂, 2022, 44(7): 1063-1070. doi: 10.13822/j.cnki.hxsj.2022.0157

    SUN Yuzhu, ZHANG Libing, ZHANG Ruizhong. Progress in preparation of molybdenum disulfide and its application in electrochemical sensing[J]. Chemical Reagents, 2022, 44(7): 1063-1070(in Chinese). doi: 10.13822/j.cnki.hxsj.2022.0157
    [10] KIM J, CAMPBELL A S, DEÁVILA B, et al. Wearable biosensors for healthcare monitoring[J]. Nature Biotechnology, 2019, 37(4): 389-406. doi: 10.1038/s41587-019-0045-y
    [11] 李昊臻. 氧化锌及复合材料的制备及其压电催化性能研究[D]. 南京: 南京信息工程大学, 2022.

    LI Haozhen. Preparation and piezoelectric catalytic properties of zinc oxide and its composite materials[D]. Nanjing: Nanjing University of Information Science & Technology, 2022(in Chinese).
    [12] ANH N, HUYEN N, DINH N, et al. ZnO/ZnFe2O4 nanocomposite-based electrochemical nanosensors for the detection of furazolidone in pork and shrimp samples: Exploring the role of crystallinity, phase ratio, and heterojunction formation[J]. New Journal of Chemistry, 2022, 46(15): 7090-7102. doi: 10.1039/D1NJ05837A
    [13] RUMJIT N, THOMAS P, LAI C, et al. Review-recent advancements of ZnO/rGO nanocomposites (NCs) for electrochemical gas sensor applications[J]. Journal of the Electrochemical Society, 2021, 168(2): 027506. doi: 10.1149/1945-7111/abdee7
    [14] FAZIO E, SPADARO S, CORSARO C, et al. Metal-oxide based nanomaterials: Synthesis, characterization and their applications in electrical and electrochemical sensors[J]. Sensors, 2021, 21(7): 2494.
    [15] ZHOU F, LI Y, TANG Y M, et al. A novel flexible non-enzymatic electrochemical glucose sensor of excellent performance with ZnO nanorods modified on stainless steel wire sieve and stimulated via UV irradiation[J]. Ceramics International, 2022, 48(10): 14395-14405. doi: 10.1016/j.ceramint.2022.01.332
    [16] 李坤阳. 石墨烯与氧化锌复合材料的光学性质研究[D]. 成都: 电子科技大学, 2017.

    LI Kunyang. Optical properties of graphene zinc oxide composites[D]. Chengdu: University of Electronic Science and Technology of China, 2017(in Chinese).
    [17] 朱正峰. 氧化锌基柔性可穿戴光电探测器的设计与界面调控[D]. 南京: 南京理工大学, 2019.

    ZHU Zhengfeng. Design and interface control of flexible wearable photodetector based on zinc oxide[D]. Nanjing: Nanjing University of Science and Technology, 2019(in Chinese).
    [18] 陈仕强. 一维二氧化钛纳米材料的制备、改性及性能研究[D]. 武汉: 湖北工业大学, 2016.

    CHEN Shiqiang. Preparation, modification and properties of one-dimensional titanium dioxide nanomaterials[D]. Wuhan: Hubei University of Technology, 2016(in Chinese).
    [19] 霍小鹤, 刘培培, 刘小强, 等. 以金纳米颗粒-二氧化钛纳米线阵列为支架的电化学免疫传感的构建及其应用[J]. 化学研究, 2017, 28(1): 113-119. doi: 10.14002/j.hxya.2017.01.020

    HUO Xiaohe, LIU Peipei, LIU Xiaoqiang, et al. Construction and application of electrochemical immunosensing based on gold nanoparticles-titanium dioxide nanowire arrays[J]. Chemical Research, 2017, 28(1): 113-119(in Chinese). doi: 10.14002/j.hxya.2017.01.020
    [20] 赵明富, 聂青林, 石胜辉, 等. 改性纳米二氧化钛修饰长周期光纤光栅的折射率传感特性[J]. 光电子·激光, 2021, 32(1): 7-13. doi: 10.16136/j.joel.2021.01.0282

    ZHAO Mingfu, NIE Qinglin, SHI Shenghui, et al. Refractive index sensing properties of modified nano-titanium dioxide modified long-period fiber bragg grating[J]. Journal of Optoelectronics Laser, 2021, 32(1): 7-13(in Chinese). doi: 10.16136/j.joel.2021.01.0282
    [21] 张彭心如. 抑郁症标志物DCNP1及芒柄花素的柔性电化学传感器构建与应用[D]. 兰州: 兰州大学, 2023.

    ZHANG Pengxinru. Construction and application of flexible electrochemical sensors for depression marker DCNP1 and formononetin[D]. Lanzhou: Lanzhou University, 2023(in Chinese).
    [22] 李丽. 纸基过渡金属及其复合材料的设计制备与电化学应用研究[D]. 济南: 济南大学, 2021.

    LI Li. Design, preparation and electrochemical application of paper based transition metals and their composites[D]. Jinan: University of Jinan, 2021(in Chinese).
    [23] MPHUTHI N, SIKHWIVHILU L, RAY S, et al. Functionalization of 2D MoS2 nanosheets with various metal and metal oxide nanostructures: Their properties and application in electrochemical sensors[J]. Biosensors, 2022, 12(6): 386. doi: 10.3390/bios12060386
    [24] SAMY O, ZENG S, BIROWOSUTO M, et al. A review on MoS2 properties, synthesis, sensing applications and challenges[J]. Crystals, 2021, 11(4): 355. doi: 10.3390/cryst11040355
    [25] GONG L, FENG L, ZHENG Y, et al. Molybdenum disulfide-based nanoprobes: Preparation and sensing application[J]. Biosensors, 2022, 12(2): 87. doi: 10.3390/bios12020087
    [26] ATACAN K, GUY N, ZACAR M, et al. Preparation of gold decorated MoS2/NiO nanocomposite in the production of a new electrochemical sensor for ascorbic acid detection[J]. Korean Journal of Chemical Engineering, 2022, 39(8): 2172-2181. doi: 10.1007/s11814-021-1039-2
    [27] ZRIBI R, FOTI A, DONATO M, et al. Fabrication of a novel electrochemical sensor based on carbon cloth matrix functionalized with MoO3 and 2D-MoS2 layers for riboflavin determination[J]. Sensors, 2021, 21(4): 1371. doi: 10.3390/s21041371
    [28] REN S F, CUI W Y, LIU Y, et al. Molecularly imprinted sensor based on 1T/2H MoS2 and MWCNTs for voltammetric detection of acetaminophen[J]. Sensors and Actuators: A, Physical, 2022, 345: 113772.
    [29] VISHNU N, BADHULIKA S. Single step grown MoS2 on pencil graphite as an electrochemical sensor for guanine and adenine: A novel and low cost electrode for DNA studies[J]. Biosensors & Bioelectronics, 2019, 124: 122-128.
    [30] LEI Y, BUTLER D, LUCKING M C, et al. Single-atom doping of MoS2 with manganese enables ultrasensitive detection of dopamine: Experimental and computational approach[J]. Science Advances, 2020, 6(32): eabc4250. doi: 10.1126/sciadv.abc4250
    [31] KOKAB T, SHAH A, KHAN M A, et al. Simultaneous femtomolar detection of paracetamol, diclofenac, and orphenadrine using a carbon nanotube/zinc oxide nanoparticle-based electrochemical sensor[J]. ACS Applied Nano Materials, 2021, 4(5): 4699-4712. doi: 10.1021/acsanm.1c00310
    [32] 朱路, 邓橙, 陈平, 等. 基于碳纳米管无纺布的葡萄糖氧化酶生物传感器[J]. 新型炭材料, 2013, 28(5): 342-348.

    ZHU Lu, DENG Cheng, CHEN Ping, et al. Glucose oxidase biosensor based on carbon nanotube non-woven fabric[J]. New Carbon Materials, 2013, 28(5): 342-348(in Chinese).
    [33] 张艳. 三维碳基柔性电极的制备及其在电化学传感器中的应用[D]. 武汉: 华中科技大学, 2018.

    ZHANG Yan. Preparation of three-dimensional carbon based flexible electrode and its application in electrochemical sensors[D]. Wuhan: Huazhong University of Science and Technology, 2018(in Chinese).
    [34] WANG L, XIE S, WANG Z, et al. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers[J]. Nature Biomedical Engineering, 2019, 4(2): 159-171. doi: 10.1038/s41551-019-0462-8
    [35] OH D, LEE C S, KIM T W, et al. A flexible and transparent PtNP/SWCNT/PET electrochemical sensor for nonenzymatic detection of hydrogen peroxide released from living cells with real-time monitoring capability[J]. Biosensors-Basel, 2023, 13(7): 704. doi: 10.3390/bios13070704
    [36] 丁三元. 功能化共价有机框架材料: 设计合成、表征及应用[D]. 兰州: 兰州大学, 2015.

    DING Sanyuan. Functional covalent organic frameworks: Designed synthesis, characterization, and application[D]. Lanzhou: Lanzhou University, 2015(in Chinese).
    [37] LING W, XU H, HUANG X, et al. Materials and techniques for implantable nutrient sensing using flexible sensors integrated with metal-organic frameworks[J]. Advanced Materials, 2018, 30(23): e1800917. doi: 10.1002/adma.201800917
    [38] LING W, HAO Y, WANG H, et al. A novel Cu-metal-organic framework with two-dimensional layered topology for electrochemical detection using flexible sensors[J]. Nanotechnology, 2019, 30(42): 424002. doi: 10.1088/1361-6528/ab30b6
    [39] PAN L, LIU G, SHI W, et al. Mechano-regulated metal-organic framework nanofilm for ultrasensitive and anti-jamming strain sensing[J]. Nature Communication, 2018, 9(1): 3813. doi: 10.1038/s41467-018-06079-3
    [40] WEI X, GUO J, LIAN H, et al. Cobalt metal-organic framework modified carbon cloth/paper hybrid electrochemical button-sensor for nonenzymatic glucose diagnostics[J]. Sensors and Actuators B: Chemical, 2021, 329: 129205. doi: 10.1016/j.snb.2020.129205
    [41] CHEN Y, CHEN Z. COF-1-modifed magnetic nanoparticles for highly selective and efcient solid-phase microextraction of paclitaxel[J]. Talanta, 2017, 165: 188-193. doi: 10.1016/j.talanta.2016.12.051
    [42] SUN X, WANG N, XIE Y, et al. In-situ anchoring bimetallic nanoparticles on covalent organic framework as an ultrasensitive electrochemical sensor for levodopa detection[J]. Talanta, 2021, 225: 122072. doi: 10.1016/j.talanta.2020.122072
    [43] PANG Y H, WANG Y Y, SHEN X F, et al. Covalent organic framework modifed carbon cloth for ratiometric electrochemical sensing of bisphenol A and S[J]. Microchimica Acta, 2022, 189: 189. doi: 10.1007/s00604-022-05297-3
    [44] CHEN Z X, YANG M, LI Z Y, et al. Highly sensitive and convenient aptasensor based on Au NPs@Ce-TpBpy COF for quantitative determination of zearalenone[J]. RSC Advances, 2022, 12(27): 17312-17320. doi: 10.1039/D2RA02093A
    [45] RONCALI J. Conjugated poly(thiophenes): Synthesis, functionalization, and applications[J]. Chemical Reviews, 1992, 92: 711-738. doi: 10.1021/cr00012a009
    [46] 宋㶲瑶. 基于导电聚合物的柔性电化学传感器构建与研究[D]. 青岛: 青岛科技大学, 2021.

    SONG Jingyao. Construction and research of flexible electrochemical sensor based on conductive polymer[D]. Qingdao: Qingdao University of Science & Technology, 2021(in Chinese).
    [47] ARMES S P, GILL M, FAIRHURST D, et al.Particle size distributions of polyaniline-silica colloidal composites[J]. Langmuir, 1992, 8: 2178-2182.
    [48] MAEDA S, CORRADI R, ARMES S P. Synthesis and characterization of carboxylic acid-functionalized polypyrrole-silica microparticles[J]. Macromolecules, 1995, 28: 2905-2911. doi: 10.1021/ma00112a042
    [49] MAEDA S, ARMES S P. Surface characterization of conducting polymer-silica nanocomposites by X-ray photoelectron spectroscopy[J]. Langmuir, 1995, 11(6): 1899-1904. doi: 10.1021/la00006a014
    [50] BRADLEY H, MARCIN G, FELIO P, et al. Deposition of EDOT-decorated hollow nanocapsules into PEDOT films for optical and electrochemical sensing[J]. Nano Material, 2020, 3: 6328-6335.
    [51] GREGORY A S, KYUNGHOON L. Poly(thieno[3, 4-b]thiophene): A p- and n-dopable polythiophene exhibiting high optical transparency in the semiconducting state[J]. Macromolecules, 2002, 35: 7281-7286.
    [52] DERYA B, ABIDIN B, SELIN C, et al. Processable multipurpose conjugated polymer for electrochromic and photovoltaic applications[J]. Chemistry of Materials, 2010, 22: 2978-2987. doi: 10.1021/cm100372t
    [53] SERBAN F P, SALEEM B, MUTHA M G, et al. Peroxynitrite and nitroxidative stress: Detection probes and micro-sensors, a case of a nanostructured catalytic film[J]. Oxidative Stress: Diagnostics, Prevention, and Therapy, 2011, 11: 311-339.
    [54] ZHENG L Y, CONGDON R B, SADIK O A, et al. Electrochemical measurements of biofilm development using polypyrrole enhanced flexible sensors[J]. Sensors and Actuators B: Chemical, 2013, 182: 725-732. doi: 10.1016/j.snb.2013.03.097
    [55] MZOUGHI N, ABDELLAH A, GONG Q, et al. Characterization of novel impedimetric pH-sensors based on solution-processable biocompatible thin-film semiconducting organic coatings[J]. Sensors and Actuators B: Chemical, 2012, 171-172: 537-543. doi: 10.1016/j.snb.2012.05.029
    [56] SURIYAPRAKASH J, BALA K, SHAN L, et al. Molecular engineered carbon-based sensor for ultrafast and specific detection of neurotransmitters[J]. ACS Applied Materials & Interfaces, 2021, 13(51): 60878-60893.
    [57] SURIYAPRAKASH J, GUPTA N, WU L, et al. Engineering of all solution/substrate processable biosensors for the detection of epinephrine as low as pM with rapid readout[J]. Chemical Engineering Journal, 2022, 436: 135254. doi: 10.1016/j.cej.2022.135254
    [58] SUBRAMANI I G, PERUMAL V, GOPINATH S, et al. 1, 1'-carbonyldiimidazole-copper nanoflower enhanced collapsible laser scribed graphene engraved microgap capacitive aptasensor for the detection of milk allergen[J]. Springer Science and Business Media LLC, 2021, 11(1): 20825.
    [59] ARENA A, BRANCA C, CIOFI C, et al. Development, characterization and sensing properties of graphene films deposited from platelets mixed with dodecyl benzene sulfonic acid[J]. IEEE Sensors Journal, 2021, 21(1): 394-402.
    [60] HERAS A, VULCANO F, GAROZ-RUIZ J, et al. A flexible platform of electrochemically functionalized carbon nanotubes for NADH sensors[J]. Sensors, 2019, 19(3): 518. doi: 10.3390/s19030518
    [61] AKILARASAN M, TAMILALAGAN E, CHEN S M, et al. An eco-friendly low-temperature synthetic approach towards micro-pebble-structured GO@SrTiO3 nanocomposites for the detection of 2, 4, 6-trichlorophenol in environmental samples[J]. Microchimica Acta, 2021, 188: 1-10. doi: 10.1007/s00604-021-04729-w
    [62] 储华聪. 多孔有机框架复合材料制备及在电化学传感中应用[D]. 扬州: 扬州大学, 2023.

    CHU Huacong. Preparation and application of porous organic frameworks composites in electrochemical sensing[D]. Yangzhou: Yangzhou University, 2023(in Chinese).
    [63] LIN K C, SRIRAM M, SHALINI P. Flex-GO (flexible graphene oxide) sensor for electrochemical monitoring lactate in low-volume passive perspired human sweat[J]. Talanta, 2020, 214: 120810. doi: 10.1016/j.talanta.2020.120810
    [64] JO E Y, LEE J H. Polyaniline-nanofiber-modified screen-printed electrode with intermediate dye amplification for detection of endocrine disruptor bisphenol A[J]. Microchemical Journal, 2020, 155: 104693. doi: 10.1016/j.microc.2020.104693
    [65] XU J, LIU Y B, LI Y J, et al. Smartphone-assisted flexible electrochemical sensor platform by a homology DNA nanomanager tailored for multiple cancer markers field inspection[J]. Analytical Chemistry, 2023, 95(35): 13305-13312. doi: 10.1021/acs.analchem.3c02481
    [66] DERVIN S, GANGULY P, DAHIYA R S. Disposable electrochemical sensor using graphene oxide-chitosan modified carbon-based electrodes for the detection of tyrosine[J]. IEEE Sensors Journal, 2021, 21(23): 26226-26233. doi: 10.1109/JSEN.2021.3073287
    [67] PENG H, WANG K, HUANG Z. An injection molding method to prepare chitosan-zinc composite material for novel biodegradable flexible implant devices[J]. Materials and Manufacturing Processes, 2018, 34(3): 256-261.
    [68] MOLINNUS D, DRINIC A, IKEN H, et al. Towards a flexible electrochemical biosensor fabricated from biocompatible bombyx mori silk[J]. Biosensors & Bioelectronics, 2021, 183: 113204.
    [69] HOU C, XU Z, QIU W, et al. A biodegradable and stretchable protein-based sensor as artificial electronic skin for human motion detection[J]. Small, 2019, 15(11): e1805084. doi: 10.1002/smll.201805084
    [70] HAN J, LU K, YUE Y, et al. Nanocellulose-templated assembly of polyaniline in natural rubber-based hybrid elastomers toward flexible electronic conductors[J]. Industrial Crops and Products, 2019, 128: 94-107. doi: 10.1016/j.indcrop.2018.11.004
    [71] RASTOGI P K, GANESAN V, KRISHNAMOORTHI S. Palladium nanoparticles decorated gaur gum based hybrid material for electrocatalytic hydrazine determination[J]. Electrochimica Acta, 2014, 125: 593-600. doi: 10.1016/j.electacta.2014.01.148
    [72] RAO J, LYU Z, DING Q, et al. Rapid processing of holocellulose-based nanopaper toward an electrode material[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(8): 3337-3346.
  • 加载中
图(11)
计量
  • 文章访问数:  387
  • HTML全文浏览量:  133
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-10
  • 修回日期:  2023-11-14
  • 录用日期:  2023-11-30
  • 网络出版日期:  2023-12-06
  • 刊出日期:  2024-05-01

目录

    /

    返回文章
    返回