留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PVDF/PPy柔性直流纳米发电机的制备与性能

李金徽 刘晓东 金欣 史善静 王闻宇

李金徽, 刘晓东, 金欣, 等. PVDF/PPy柔性直流纳米发电机的制备与性能[J]. 复合材料学报, 2024, 41(6): 2985-2995. doi: 10.13801/j.cnki.fhclxb.20231122.001
引用本文: 李金徽, 刘晓东, 金欣, 等. PVDF/PPy柔性直流纳米发电机的制备与性能[J]. 复合材料学报, 2024, 41(6): 2985-2995. doi: 10.13801/j.cnki.fhclxb.20231122.001
LI Jinhui, LIU Xiaodong, JIN Xin, et al. Preparation and performance of PVDF/PPy flexible DC nano-generator[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 2985-2995. doi: 10.13801/j.cnki.fhclxb.20231122.001
Citation: LI Jinhui, LIU Xiaodong, JIN Xin, et al. Preparation and performance of PVDF/PPy flexible DC nano-generator[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 2985-2995. doi: 10.13801/j.cnki.fhclxb.20231122.001

PVDF/PPy柔性直流纳米发电机的制备与性能

doi: 10.13801/j.cnki.fhclxb.20231122.001
基金项目: 国家自然科学基金(51573136)
详细信息
    通讯作者:

    金欣,博士,教授,博士生导师,研究方向为功能纤维材料结构与性能 E-mail: jinxin@tiangong.edu.cn

  • 中图分类号: TB303;TB332

Preparation and performance of PVDF/PPy flexible DC nano-generator

Funds: National Natural Science Foundation of China (51573136)
  • 摘要: 针对传统纳米发电机为交流输出,仍需采用外部整流器进行直流转化而导致的难以高度集成、柔性化和较低的功率密度问题,本文将聚偏氟乙烯(PVDF)静电纺膜作为基底,在其表面气相聚合聚吡咯(PPy),制得PVDF/PPy复合纳米纤维膜,并依据肖特基整流原理,以该复合纳米纤维膜构建直流纳米发电机。研究了不同聚合时间下氧化剂浓度对PVDF/PPy复合纳米纤维膜形貌和直流纳米发电机机电性能的影响。结果表明:当氧化剂浓度为2.0 mol/L,聚合时间为90 min时,电输出性能最优,对应峰值电压输出为1.23 V,峰值电流输出为210.55 μA,理论功率密度达到28.77 μW/cm2。本项研究展示的PVDF/PPy直流纳米发电机,其能源转换机制源于压电高分子的压电效应和肖特基结的整流效应。该类直流纳米发电机具备柔韧、集成式和自整流的特征,可灵活用于各种场所,直接为电子设备提供电能。

     

  • 图  1  聚偏氟乙烯/聚吡咯(PVDF/PPy)直流纳米发电机的制备及测试示意图:(a) PVDF 纳米纤维膜的制备;(b) 气相合成 PPy;(c) PVDF/PPy 直流(DC)纳米发电机;(d) 机电测试仪

    Py—Pyrrole

    Figure  1.  Schematic diagram of preparation and test of poly(vinylidene fluoride)/poly(pyrrole) (PVDF/PPy) DC nano-generator: (a) Preparing PVDF nanofiber membrane; (b) Gas phase polymerization of PPy; (c) PVDF/PPy direct current (DC) nano-generator; (d) Electromechanical performance testing equipment

    图  2  纺丝流量对 PVDF 纳米纤维膜形貌的影响(纺丝时间为 5 h):(a) 0.6 mL/h;(b) 0.7 mL/h;(c) 0.8 mL/h;(d) 0.9 mL/h;(e) 1.0 mL/h;(f) 纺丝流量对纤维直径的影响

    Figure  2.  Effect of spinning flow rate on microstructure of PVDF nanofiber membrane (Spinning time is 5 h): (a) 0.6 mL/h; (b) 0.7 mL/h; (c) 0.8 mL/h; (d) 0.9 mL/h; (e) 1.0 mL/h; (f) Effect of spinning flow-rate on fiber diameter

    图  3  纺丝时间为 3 h,纺丝流速对电压输出(a)和电流输出(b)的影响;纺丝时间和流速对电压输出(c)和电流输出(d)的影响

    Figure  3.  Effect of spinning flow-rate with spinning time of 3 h on voltage output (a) and current output (b); Influence of spinning time and flow-rate on voltage output (c) and current output (d)

    图  4  氧化剂浓度0.5 mol/L (a)、1.0 mol/L (b)、1.5 mol/L (c)、2.0 mol/L (d)、2.5 mol/L (e)和聚合时间(f)对 PVDF/PPy 复合纳米纤维膜形貌及电阻的影响

    Figure  4.  Effect of oxidant concentration 0.5 mol/L (a), 1.0 mol/L (b), 1.5 mol/L (c), 2.0 mol/L (d), 2.5 mol/L (e) and polymerization time (f) on the microstructure and resistance of PVDF/PPy composite nanofiber membranes

    图  5  不同聚合时间下氧化剂浓度对 PVDF/PPy 纳米发电机电压输出的影响:(a) 30 min;(b) 60 min;(c) 90 min;(d) 120 min;(e) 150 min;(f) 聚合时间为 90 min 时不同氧化剂浓度下的电流-电压(I-V)曲线

    Figure  5.  Effect of oxidant concentration on voltage of the PVDF/PPy nano-generator under different polymerization time: (a) 30 min; (b) 60 min; (c) 90 min; (d) 120 min; (e) 150 min; (f) Current-voltage (I-V) curves under different oxidation concentrations at polymerization time of 90 min

    图  6  不同聚合时间下氧化剂浓度对PVDF/PPy纳米发电机电流输出的影响:(a) 30 min;(b) 60 min;(c) 90 min;(d) 120 min;(e) 150 min;(f) 聚合时间为90 min时不同氧化剂浓度下的电荷积累

    Figure  6.  Effect of oxidant concentration on current of the PVDF/PPy nano-generator at different polymerization time: (a) 30 min; (b) 60 min; (c) 90 min; (d) 120 min; (e) 150 min; (f) Charge accumulation under different oxidation concentrations at polymerization time of 90 min

    图  7  PVDF交流(AC)纳米发电机与PVDF/PPy DC纳米发电机的电压、电流输出及理论功率密度

    Figure  7.  Voltage, current output and theoretical power density of PVDF alternating current (AC) nano-generator and PVDF/PPy DC nano-generator

    图  8  PVDF/PPy 器件机制和性能:(a) 肖特基接触示意图及肖特基势垒和内建电场;(b) 不同电极的I-V曲线;(c) Al/PVDF/PPy/Cu器件示意图(氧化剂浓度 2 mol/L,聚合时间 90 min)、输出电压(d)和输出电流(e);(f) 组合器件Al/PVDF/PPy/Cu/PVDF/Cu示意图及电压输出(g)和电流输出(h);(i) 组合器件Cu/PVDF/Al/PVDF/PPy/Cu示意图及电压输出(j)和电流输出(k)

    Figure  8.  Mechanism and performance of PVDF/PPy devices: (a) Schottky contact schematic diagram, with an enlarged view showing Schottky barrier and built-in electric field; (b) I-V curves of different electrodes; Schematic diagram of PVDF/PPy device (Oxidant concentration 2 mol/L, polymerization time 90 min) (c), output voltage (d) and output current (e); Schematic diagram of the combined device Al/PVDF/PPy/Cu/PVDF/Cu (f) and output voltage (g) and output current (h); Schematic diagram of combined device Cu/PVDF/Al/PVDF/PPy/Cu (i) and output voltage (j) and output current (k)

    ε—Built-in electric field; EFM—Fermi energy levels of metals; EFS—Fermi energy levels for semiconductors; EC—Conduction zone bottom energy level; EV—Valence band top energy level

    图  9  PVDF/PPy直流纳米发电机直接点亮商用LED灯(a)及对应电路图(b)

    Figure  9.  PVDF/PPy DC nano-generator can directly light commercial LED lamps (a) and its corresponding circuit diagram (b)

    表  1  直流纳米发电机的机电性能

    Table  1.   Electromechanical performance of DC nano-generator

    Device configuration Output voltage/V Current density/(μA·cm−2) Theoretical power/(μW·cm−2) Ref.
    Au/PPy/Al 0.7 218.6 153.02 [25]
    Al/PEDOT:PSS 0.8 73(0.73 A/m2) 58.4 [26]
    ZnO NWs/Pt 0.01 8.33(500 nA, 2 mm×3 mm) 0.08 [35]
    Au/ZnO/Cu 0.3 3.11(7 μA, 2.25 cm2) 0.93 [36]
    Au/ZnO-PAN/ZnO-Cu 1.6 7.2 11.52 [36]
    Au/PANI/Al 0.6 (80.5 μA) [37]
    Cu/PANI/Ag 3.5 (800 μA) [37]
    Au/PPy-DMSO/Al 0.88 105.9 93.19 [38]
    Au/PPy/Al 0.67 6.35(8.45 μA, 1.33 cm2) 4.25 [38]
    PANI-coated fabric/PVDF 3.2 3.77 12.06 [39]
    Al/PEDOT coating 0.45 2.5(2.5 μA, 1 cm2) 1.13 [40]
    Cu/PVDF-PPy/Al 1.23 23.39(210.55 μA, 9 cm2) 28.77 This work
    Notes: PEDOT:PSS—Poly(3, 4-ethylenedioxythiophene):polystyrene sulfonate; NWs—Nanowires; PAN—Polyacrylonitrile; PANI—Polyaniline; DMSO—Dimethyl sulfoxide.
    下载: 导出CSV
  • [1] GUAN X Y, XU B G, WU M J, et al. Breathable, washable and wearable woven-structured triboelectric nanogenerators utilizing electrospun nanofibers for biomechanical energy harvesting and self-powered sensing[J]. Nano Energy, 2021, 80: 105549. doi: 10.1016/j.nanoen.2020.105549
    [2] LIU H C, ZHONG J W, LEE C K, et al. A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications[J]. Applied Physics Reviews, 2018, 5(4): 041306. doi: 10.1063/1.5074184
    [3] FU X P, BU T Z, LI C L, et al. Overview of micro/nano-wind energy harvesters and sensors[J]. Nanoscale, 2020, 12(47): 23929-23944. doi: 10.1039/D0NR06373H
    [4] SAHOO S, WALKE P, NAYAK S K, et al. Recent developments in self-powered smart chemical sensors for wearable electronics[J]. Nano Research, 2021, 14(11): 3669-3689. doi: 10.1007/s12274-021-3330-8
    [5] WANG Z L, SONG J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312(5771): 242-246. doi: 10.1126/science.1124005
    [6] FAN F R, TIAN Z Q, WANG Z L. Flexible triboelectric generator[J]. Nano Energy, 2012, 1(2): 328-334. doi: 10.1016/j.nanoen.2012.01.004
    [7] YANG R S, QIN Y, DAI L M, et al. Power generation with laterally packaged piezoelectric fine wires[J]. Nature Nanotechnology, 2009, 4(1): 34-39. doi: 10.1038/nnano.2008.314
    [8] DONG L, CLOSSON A B, JIN C R, et al. Vibration-energy-harvesting system: Transduction mechanisms, frequency tuning techniques, and biomechanical applications[J]. Advanced Materials Technologies, 2019, 4(10): 1900177. doi: 10.1002/admt.201900177
    [9] SIDDIQUE A R M, MAHMUD S, VAN HEYST B. A comprehensive review on vibration based micro power generators using electromagnetic and piezoelectric transducer mechanisms[J]. Energy Conversion and Management, 2015, 106: 728-747. doi: 10.1016/j.enconman.2015.09.071
    [10] HU D W, YAO M G, FAN Y, et al. Strategies to achieve high performance piezoelectric nanogenerators[J]. Nano Energy, 2019, 55: 288-304. doi: 10.1016/j.nanoen.2018.10.053
    [11] DENG W L, ZHOU Y H, LIBANORI A, et al. Piezoelectric nanogenerators for personalized healthcare[J]. Chemical Society Reviews, 2022, 51(9): 3380-3435.
    [12] SEZER N, KOÇ M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting[J]. Nano Energy, 2021, 80: 105567. doi: 10.1016/j.nanoen.2020.105567
    [13] ZHU G, PAN C F, GUO W X, et al. Triboelectric-generator-driven pulse electrodeposition for micropatterning[J]. Nano Letters, 2012, 12(9): 4960-4965. doi: 10.1021/nl302560k
    [14] WANG Y F, JIN X, WANG W Y, et al. Efficient triboelectric nanogenerator (TENG) output management for improving charge density and reducing charge loss[J]. ACS Applied Electronic Materials, 2021, 3(2): 532-549. doi: 10.1021/acsaelm.0c00890
    [15] KIM W G, KIM D W, TCHO I W, et al. Triboelectric nanogenerator: Structure, mechanism, and applications[J]. ACS Nano, 2021, 15(1): 258-287. doi: 10.1021/acsnano.0c09803
    [16] SONG Y D, WANG N, WANG Y H, et al. Direct current triboelectric nanogenerators[J]. Advanced Energy Materials, 2020, 10(45): 2002756. doi: 10.1002/aenm.202002756
    [17] JIANG X N, HUANG W B, ZHANG S J. Flexoelectric nano-generator: Materials, structures and devices[J]. Nano Energy, 2013, 2(6): 1079-1092. doi: 10.1016/j.nanoen.2013.09.001
    [18] TRIPATHY A, SARAVANAKUMAR B, MOHANTY S, et al. Comprehensive review on flexoelectric energy harvesting technology: Mechanisms, device configurations, and potential applications[J]. ACS Applied Electronic Materials, 2021, 3(7): 2898-2924. doi: 10.1021/acsaelm.1c00267
    [19] CHANDRASEKARAN S, BOWEN C, ROSCOW J, et al. Micro-scale to nano-scale generators for energy harvesting: Self powered piezoelectric, triboelectric and hybrid devices[J]. Physics Reports, 2019, 792: 1-33. doi: 10.1016/j.physrep.2018.11.001
    [20] XIE L J, ZHAI N N, LIU Y N, et al. Hybrid triboelectric nanogenerators: From energy complementation to integration[J]. Research, 2021, 2021: 9143762.
    [21] VIDAL J V, SLABOV V, KHOLKIN A L, et al. Hybrid triboelectric-electromagnetic nanogenerators for mechanical energy harvesting: A review[J]. Nano-Micro Letters, 2021, 13(1): 1-58. doi: 10.1007/s40820-020-00525-y
    [22] SRIPHAN S, VITTAYAKORN N. Hybrid piezoelectric-triboelectric nanogenerators for flexible electronics: Recent advances and perspectives[J]. Journal of Science: Advanced Materials and Devices, 2022, 7(3): 100461.
    [23] WANG W Y, ZHENG Y D, JIN X, et al. Unexpectedly high piezoelectricity of electrospun polyacrylonitrile nanofiber membranes[J]. Nano Energy, 2019, 56: 588-594. doi: 10.1016/j.nanoen.2018.11.082
    [24] YE L L, CHEN L Y, YU J L, et al. High-performance piezoelectric nanogenerator based on electrospun ZnO nanorods/P(VDF-TrFE) composite membranes for energy harvesting application[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(4): 3966-3978. doi: 10.1007/s10854-020-05138-0
    [25] SHAO H, FANG J A, WANG H X, et al. Polymer-metal Schottky contact with direct-current outputs[J]. Advanced Materials, 2016, 28(7): 1461-1466. doi: 10.1002/adma.201504778
    [26] YANG R Z, BENNER M, GUO Z P, et al. High-performance flexible Schottky DC generator via metal/conducting polymer sliding contacts[J]. Advanced Functional Materials, 2021, 31(43): 2103132. doi: 10.1002/adfm.202103132
    [27] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF 柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.

    SUN Liying, QIAN Jianhua, ZHAO Yongfang. Preparation and performance of AgNWs-TPU/PVDF flexible film capacitance sensors[J]. Chinese Journal of Materials Research, 2021, 35(6): 441-448(in Chinese).
    [28] LU L J, DING W Q, LIU J Q, et al. Flexible PVDF based piezoelectric nanogenerators[J]. Nano Energy, 2020, 78: 105251. doi: 10.1016/j.nanoen.2020.105251
    [29] KHURANA V, KISANNAGAR R R, DOMALA S S, et al. In situ polarized ultrathin PVDF film-based flexible piezoelectric nanogenerators[J]. ACS Applied Electronic Materials, 2020, 2(10): 3409-3417. doi: 10.1021/acsaelm.0c00667
    [30] RANA M M, KHAN A A, HUANG G G, et al. Porosity modulated high-performance piezoelectric nanogenerator based on organic/inorganic nanomaterials for self-powered structural health monitoring[J]. ACS Applied Materials & Interfaces, 2020, 12(42): 47503-47512.
    [31] 薛优, 杨涛, 王宏洋, 等. 基于静电纺丝法原位极化 PVDF 纳米纤维薄膜构建高效压电纳米发电机[J]. 工程科学学报, 2023, 45(7): 1156-1164. doi: 10.3321/j.issn.1001-053X.2022.1.bjkjdxxb202201001

    XUE You, YANG Tao, WANG Hongyang, et al. Construction of a high-efficiency piezoelectric nanogenerator based on in situ polarization of PVDF nanofiber films by electrospinning[J]. Chinese Journal of Engineering, 2023, 45(7): 1156-1164(in Chinese). doi: 10.3321/j.issn.1001-053X.2022.1.bjkjdxxb202201001
    [32] 纪辉. 纱线应力传感器的制备与性能研究[D]. 武汉: 武汉纺织大学, 2020.

    JI Hui. Preparation and properties of wearable strain fabric sensors[D]. Wuhan: Wuhan Textile University, 2020(in Chinese).
    [33] FANG J, WANG X G, LIN T. Electrical power generator from randomly oriented electrospun poly(vinylidene fluoride) nanofibre membranes[J]. Journal of Materials Chemistry, 2011, 21(30): 11088-11091. doi: 10.1039/c1jm11445j
    [34] BRISCOE J, STEWART M, VOPSON M, et al. Nanostructured p-n junctions for kinetic-to-electrical energy conversion[J]. Advanced Energy Materials, 2012, 2(10): 1261-1268. doi: 10.1002/aenm.201200205
    [35] LIU J, FEI P, ZHOU J, et al. Toward high output-power nanogenerator[J]. Applied Physics Letters, 2008, 92(17): 173105. doi: 10.1063/1.2918840
    [36] SUN Y, ZHENG Y D, WANG R, et al. Direct-current piezoelectric nanogenerator based on two-layer zinc oxide nanorod arrays with equal c-axis orientation for energy harvesting[J]. Chemical Engineering Journal, 2021, 426: 131262. doi: 10.1016/j.cej.2021.131262
    [37] MENG Y F, ZHANG L, XU G Y, et al. Direct-current generators based on conductive polymers for self-powered flexible devices[J]. Scientific Reports, 2021, 11(1): 20258. doi: 10.1038/s41598-021-99447-x
    [38] DING X A, SHAO H, WANG H X, et al. Effect of water and DMSO on mechanoelectrical conversion of Schottky DC generators[J]. Journal of Materials Chemistry A, 2022, 10(24): 13055-13065. doi: 10.1039/D2TA02213C
    [39] HAN X, NIU J R, WANG Y F, et al. Polyaniline-based Schottky-triboelectric hybrid DC generators with tunable electrical outputs[J]. Nano Energy, 2022, 104: 107956. doi: 10.1016/j.nanoen.2022.107956
    [40] MENG J A, GUO Z H, PAN C X, et al. Flexible textile direct-current generator based on the tribovoltaic effect at dynamic metal-semiconducting polymer interfaces[J]. ACS Energy Letters, 2021, 6(7): 2442-2450. doi: 10.1021/acsenergylett.1c00288
    [41] DING X, SHAO H, WANG H X, et al. Schottky DC generators with considerable enhanced power output and energy conversion efficiency based on polypyrrole-TiO2 nanocomposite[J]. Nano Energy, 2021, 89: 106367. doi: 10.1016/j.nanoen.2021.106367
    [42] ABTHAGIR P S, SARASWATHI R. Junction properties of metal/polypyrrole Schottky barriers[J]. Journal of Applied Polymer Science, 2001, 81(9): 2127-2135. doi: 10.1002/app.1648
    [43] BOUTRY C M, MÜLLER M, HIEROLD C. Junctions between metals and blends of conducting and biodegradable polymers (PLLA-PPy and PCL-PPy)[J]. Materials Science and Engineering: C, 2012, 32(6): 1610-1620. doi: 10.1016/j.msec.2012.04.051
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  222
  • HTML全文浏览量:  160
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-23
  • 修回日期:  2023-10-12
  • 录用日期:  2023-11-15
  • 网络出版日期:  2023-11-23
  • 刊出日期:  2024-06-15

目录

    /

    返回文章
    返回