留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

静电溶液喷射纺丝制备蜂窝多孔碳纳米纤维及其超级电容器性能

朱琳 王一帆 韩露 周兴海 单熙雅 崔文琦 高原 吕丽华

朱琳, 王一帆, 韩露, 等. 静电溶液喷射纺丝制备蜂窝多孔碳纳米纤维及其超级电容器性能[J]. 复合材料学报, 2024, 41(6): 3006-3015. doi: 10.13801/j.cnki.fhclxb.20231120.003
引用本文: 朱琳, 王一帆, 韩露, 等. 静电溶液喷射纺丝制备蜂窝多孔碳纳米纤维及其超级电容器性能[J]. 复合材料学报, 2024, 41(6): 3006-3015. doi: 10.13801/j.cnki.fhclxb.20231120.003
ZHU Lin, WANG Yifan, HAN Lu, et al. Preparation of honeycomb porous carbon nanofibers via electro-blowing spinning and investigation of their supercapacitor performance[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3006-3015. doi: 10.13801/j.cnki.fhclxb.20231120.003
Citation: ZHU Lin, WANG Yifan, HAN Lu, et al. Preparation of honeycomb porous carbon nanofibers via electro-blowing spinning and investigation of their supercapacitor performance[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3006-3015. doi: 10.13801/j.cnki.fhclxb.20231120.003

静电溶液喷射纺丝制备蜂窝多孔碳纳米纤维及其超级电容器性能

doi: 10.13801/j.cnki.fhclxb.20231120.003
基金项目: 辽宁省自然科学基金项目(2022-BS-269)
详细信息
    通讯作者:

    周兴海,博士,讲师,研究方向为功能性纳微米纤维材料的开发与制备  E-mail:zhouxh@dlpu.edu.cn

  • 中图分类号: TB34;TB332

Preparation of honeycomb porous carbon nanofibers via electro-blowing spinning and investigation of their supercapacitor performance

Funds: National Science Foundation of Liaoning Province (2022-BS-269)
  • 摘要: 一维多孔碳纳米纤维具有比表面积高、长径比大、电子传输高效等特点,成为超级电容器电极材料的热门选择。利用静电溶液喷射纺丝技术,以聚乙烯吡咯烷酮(PVP)为成碳高聚物,聚四氟乙烯乳液(PTFE)为制孔剂,结合高温碳化工艺得到蜂窝多孔碳纳米纤维超级电容器电极材料。通过SEM、TEM、Raman、XRD和BET等测试对制备的电极材料形貌和结构进行了表征,并分析了制孔剂含量对纤维形貌、孔结构及电化学性能的影响。结果表明:当纺丝液中PVP∶PTFE质量比为1∶10时,制备的电极材料具有最大的比表面积165 m²/g;在0.5 A·g−1电流密度下,其比电容值高达277.5 F·g−1;在二电极体系中,其功率密度为250 W/kg时,能量密度可达31.6 W·h/kg;经10000圈充放电循环后,其电容保持率可达98.4%,展示出了良好的电容性能和循环性能。这种独特的高孔隙率蜂窝多孔碳纳米纤维电极材料能够为电荷存储提供充足的活性位点,同时为电子/离子的快速传输提供便利通道,对高性能超级电容器电极材料的开发具有一定参考和指导意义。

     

  • 图  1  蜂窝多孔碳纳米纤维(PCNFs)制备流程图

    Figure  1.  Schematic diagram of the preparation of honeycomb-like carbon nanofibers (PCNFs)

    图  2  不同PVP与PTFE质量比的初生纤维SEM图像: (a) 1∶5;(b) 1∶10;(c) 1∶15;蜂窝多孔碳纤维电镜和透射图: (d) PCNFs-1;(e) PCNFs-2;(f) PCNFs-3;(g) PCNFs-2纤维截面SEM图像;(h) 蜂巢电子照片

    Figure  2.  SEM images of as-spun fibers with different mass ratios of PVP and PTFE: (a) 1∶5; (b) 1∶10; (c) 1∶15; SEM and TEM images of PCNF: (d) PCNFs-1; (e) PCNFs-2; (f) PCNFs-3; (g) Cross section SEM image of PCNFs-2; (h) Digital image of honeycomb

    图  3  蜂窝多孔碳纳米纤维Raman图谱(a)、XRD图谱(b) 、N2等温吸脱附曲线(c) 和孔径分布曲线(d)

    Figure  3.  Raman spectrum (a), XRD patterns (b), N2 adsorption-desorption isotherms (c) and pore size distribution curves (d) of honeycomb porous carbon nanofibers

    图  4  不同扫描速率下的CV曲线 :(a) PCNFs-1;(b) PCNFs-2;(c) PCNFs-3;不同电流密度下的GCD曲线 :(d) PCNFs-1;(e) PCNFs-2;(f) PCNFs-3

    Figure  4.  CV curves at different scanning rates: (a) PCNFs-1; (b) PCNFs-2; (c) PCNFs-3; GCD curves at different current densities: (d) PCNFs-1; (e) PCNFs-2; (f) PCNFs-3

    图  5  蜂窝多孔碳纳米纤维: (a) 0.5 A·g−1电流密度下的GCD曲线;(b) 50 mV·s−1扫描速率下的CV曲线;(c) 奈奎斯特曲线及等效电路图;(d) 电导率变化图

    Figure  5.  Honeycomb porous carbon nanofibers: (a) GCD curves at a current density of 0.5 A·g−1; (b) CV curves at a scanning rate of 50 mV·s−1; (c) Nyquist plots and equivalent circuit; (d) Conductivity variation diagram

    图  6  PCNFs-1、PCNFs-2、PCNFs-3蜂窝多孔碳纳米纤维:(a)功率密度-能量密度关系;(b)电极材料循环稳定性;(c) 指标对比雷达图[29-30];(d)纽扣电池点亮 LED 电路板的数码照片

    Figure  6.  PCNFs-1, PCNFs-2, PCNFs-3 honeycomb porous carbon nanofibers: (a) Power density-energy density relationship; (b) Electrode material cycling stability; (c) Index comparison radar chart[29-30]; (d) Digital photo of button cell light LED circuit board

    表  1  不同聚乙烯吡咯烷酮(PVP)与聚四氟乙烯(PTFE)质量比的蜂窝多孔碳纳米纤维

    Table  1.   Honeycomb porous carbon nanofibers with different mass ratio of polyvinylpyrrolidone (PVP) to polytetrafluoroethylene (PTFE)

    m(PVP)∶m(PTFE)
    PCNFs-1 1∶5
    PCNFs-2 1∶10
    PCNFs-3 1∶15
    Note: m(PVP)∶m(PTFE)—Mass ratio of PVP to PTFE.
    下载: 导出CSV
  • [1] YANG Y Q, BREMNER S, MENICTAS C, et al. Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112671. doi: 10.1016/j.rser.2022.112671
    [2] LYU Y F, GENG X W, LUO W M, et al. Review on influence factors and prevention control technologies of lithium-ion battery energy storage safety[J]. Journal of Energy Storage, 2023, 72: 108389. doi: 10.1016/j.est.2023.108389
    [3] KIRUTHIKA S, SNEHA N, GUPTA R. Visibly transparent supercapacitors[J]. Journal of Materials Chemistry A, 2023, 11(10): 4907-4936. doi: 10.1039/D2TA07836H
    [4] MUZAFFAR A, AHAMED M B, DESHMUKH K, et al. A review on recent advances in hybrid supercapacitors: Design, fabrication and applications[J]. Renewable and Sustainable Energy Reviews, 2019, 101: 123-145. doi: 10.1016/j.rser.2018.10.026
    [5] LAMBA P, SINGH P, SINGH P, et al. Recent advancements in supercapacitors based on different electrode materials: Classifications, synthesis methods and comparative performance[J]. Journal of Energy Storage, 2022, 48: 103871. doi: 10.1016/j.est.2021.103871
    [6] LYU S, MA L Y, SHEN X Y, et al. Recent design and control of carbon materials for supercapacitors[J]. Journal of Materials Science, 2021, 56(3): 1919-1942. doi: 10.1007/s10853-020-05351-6
    [7] QIU C J, JIANG L L, GAO Y G, et al. Effects of oxygen-containing functional groups on carbon materials in supercapacitors: A review[J]. Materials & Design, 2023, 230: 111952.
    [8] NANDI D, MOHAN V B, BHOWMICK A K, et al. Metal/metal oxide decorated graphene synthesis and application as supercapacitor: A review[J]. Journal of Materials Science, 2020, 55(15): 6375-6400. doi: 10.1007/s10853-020-04475-z
    [9] YAN J A, LI S H, LAN B B, et al. Rational design of nanostructured electrode materials toward multifunctional supercapacitors[J]. Advanced Functional Materials, 2020, 30(2): 1902564. doi: 10.1002/adfm.201902564
    [10] FAN P Z, YE C W, XU L. One-dimensional nanostructured electrode materials based on electrospinning technology for supercapacitors[J]. Diamond and Related Materials, 2023, 134: 109803.
    [11] WEI Q L, XIONG F Y, TAN S S, et al. Porous one-dimensional nanomaterials: Design, fabrication and applications in electrochemical energy storage[J]. Advanced Materials, 2017, 29(20): 1602300. doi: 10.1002/adma.201602300
    [12] GUPTA D, VARGHESE B S, SURESH M, et al. Nanoarchitectonics: Functional nanomaterials and nanostructures—A review[J]. Journal of Nanoparticle Research, 2022, 24(10): 196. doi: 10.1007/s11051-022-05577-2
    [13] FENG P X, WANG H, HUANG P P, et al. Nitrogen-doped lignin-derived porous carbons for supercapacitors: Effect of nanoporous structure[J]. Chemical Engineering Journal, 2023, 471: 144817.
    [14] WANG X, ZHANG X Y, FU G T, et al. Recent progress of electrospun porous carbon-based nanofibers for oxygen electrocatalysis[J]. Materials Today Energy, 2021, 22: 100850. doi: 10.1016/j.mtener.2021.100850
    [15] DENG J, LI M M, WANG Y. Biomass-derived carbon: Synthesis and applications in energy storage and conversion[J]. Green Chemistry, 2016, 18(18): 4824-4854. doi: 10.1039/C6GC01172A
    [16] YIN J A, ZHANG W L, ALHEBSHI N A, et al. Synthesis strategies of porous carbon for supercapacitor applications[J]. Small Methods, 2020, 4(3): 1900853. doi: 10.1002/smtd.201900853
    [17] YANG D S, BHATTACHARJYA D, INAMDAR S, et al. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media[J]. Journal of the American Chemical Society, 2012, 134(39): 16127-16130. doi: 10.1021/ja306376s
    [18] WANG H, YAO L, ZUO H M, et al. Fabrication of porous carbon nanofibers from polymer blends using template method for electrode-active materials in supercapacitor[J]. Molecules, 2023, 28(5): 2228. doi: 10.3390/molecules28052228
    [19] NADAF A, GUPTA A, HASAN N, et al. Recent update on electrospinning and electrospun nanofibers: Current trends and their applications[J]. RSC Advances, 2022, 12(37): 23808-23828. doi: 10.1039/D2RA02864F
    [20] XU H Z, YAGI S, ASHOUR S, et al. A review on current nanofiber technologies: Electrospinning, centrifugal spinning, and electro-centrifugal spinning[J]. Macromolecular Materials and Engineering, 2023, 308(3): 2200502. doi: 10.1002/mame.202200502
    [21] LI Y, ZHU J D, CHENG H, et al. Developments of advanced electrospinning techniques: A critical review[J]. Advanced Materials Technologies, 2021, 6(11): 2100410. doi: 10.1002/admt.202100410
    [22] LI L, LIU X L, WANG G, et al. Research progress of ultrafine alumina fiber prepared by sol-gel method: A review[J]. Chemical Engineering Journal, 2021, 421: 127744. doi: 10.1016/j.cej.2020.127744
    [23] ZHOU X H, SONG K H, LI Z H, et al. The excellent catalyst support of Al2O3 fibers with needle-like mullite structure and HMF oxidation into FDCA over CuO/Al2O3 fibers[J]. Ceramics International, 2019, 45(2): 2330-2337. doi: 10.1016/j.ceramint.2018.10.148
    [24] SCHUEPFER D B, BADACZEWSKI F, GUERRA-CASTRO J M, et al. Assessing the structural properties of graphitic and non-graphitic carbons by Raman spectroscopy[J]. Carbon, 2020, 161: 359-372. doi: 10.1016/j.carbon.2019.12.094
    [25] ELANTHAMILAN E, SRIRAM B, RAJKUMAR S, et al. Couroupita guianansis dead flower derived porous activated carbon as efficient supercapacitor electrode material[J]. Materials Research Bulletin, 2019, 112: 390-398. doi: 10.1016/j.materresbull.2018.12.028
    [26] PINZÓN C M J, DE AQUINO J M, FREITAS R G, et al. A comprehensive study about the influence of pore structures of carbon-based electrode materials on the charge-storage processes of water-in-salt based supercapacitors[J]. Journal of Energy Storage, 2023, 62: 106858. doi: 10.1016/j.est.2023.106858
    [27] TAN J A, LI Z H, YE M X, et al. Nanoconfined space: Revisiting the charge storage mechanism of electric double layer capacitors[J]. ACS Applied Materials & Interfaces, 2022, 14(33): 37259-37269.
    [28] ZHANG M, ZHOU W J, HUANG W W. Characterization methods of organic electrode materials[J]. Journal of Energy Chemistry, 2021, 57: 291-303. doi: 10.1016/j.jechem.2020.08.054
    [29] PANG S Y, LIN L Y, SHEN Y Q, et al. Surface activated commercial carbon cloth as superior electrodes for symmetric supercapacitors[J]. Materials Letters, 2022, 315: 131985. doi: 10.1016/j.matlet.2022.131985
    [30] ZHENG Y L, WANG H L, SUN S J, et al. Sustainable nitrogen-doped carbon electrodes for use in high-performance supercapacitors and Li-ion capacitors[J]. Sustainable Energy & Fuels, 2020, 4(4): 1789-1800.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  213
  • HTML全文浏览量:  210
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-01
  • 修回日期:  2023-10-23
  • 录用日期:  2023-11-03
  • 网络出版日期:  2023-11-21
  • 刊出日期:  2024-06-15

目录

    /

    返回文章
    返回