留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

各向异性纤维素纳米纤维/芳纶纳米纤维复合泡沫的制备与性能

林旭 麦学妍 王钧 余雁 张雪霞

林旭, 麦学妍, 王钧, 等. 各向异性纤维素纳米纤维/芳纶纳米纤维复合泡沫的制备与性能[J]. 复合材料学报, 2024, 41(6): 3037-3046. doi: 10.13801/j.cnki.fhclxb.20231101.003
引用本文: 林旭, 麦学妍, 王钧, 等. 各向异性纤维素纳米纤维/芳纶纳米纤维复合泡沫的制备与性能[J]. 复合材料学报, 2024, 41(6): 3037-3046. doi: 10.13801/j.cnki.fhclxb.20231101.003
LIN Xu, MAI Xueyan, WANG Jun, et al. Preparation and properties of anisotropic cellulose nanofiber/aramidnanofiber composite foam[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3037-3046. doi: 10.13801/j.cnki.fhclxb.20231101.003
Citation: LIN Xu, MAI Xueyan, WANG Jun, et al. Preparation and properties of anisotropic cellulose nanofiber/aramidnanofiber composite foam[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3037-3046. doi: 10.13801/j.cnki.fhclxb.20231101.003

各向异性纤维素纳米纤维/芳纶纳米纤维复合泡沫的制备与性能

doi: 10.13801/j.cnki.fhclxb.20231101.003
基金项目: 国家自然科学基金青年项目(32001381);福建省自然科学基金项目(2022J05035)
详细信息
    通讯作者:

    张雪霞,博士,副教授,硕士生导师,研究方向为竹材高值化加工与利用 E-mail:xuexia_zhang@outlook.com

  • 中图分类号: TB332

Preparation and properties of anisotropic cellulose nanofiber/aramidnanofiber composite foam

Funds: Natural Science Foundation of China (32001381); Natural Science Foundation of Fujian Province (2022J05035)
  • 摘要: 纤维素纳米纤维(CNF)泡沫材料因其轻质、可生物降解、可再生性以及优良的隔热性能等特点,在保温隔热领域备受关注。但是CNF泡沫存在力学性能差、热稳定性差、易燃等缺点,在一定程度限制了其实际应用。本文通过将CNF与芳纶纳米纤维(ANF)进行复合,通过冰模板法和冷冻干燥技术制备了具有各向异性结构的CNF/ANF复合泡沫。探究了ANF添加量和各向异性结构的引入对复合泡沫微观结构、力学性能、热稳定性和隔热性能的影响。结果表明,当CNF和ANF的质量比为2∶1时,CNF/ANF复合泡沫具有超低的密度(12.25 mg/cm3)、良好的力学强度(纵向压缩强度为74.56 kPa)和优异的隔热性能(25.2 mW/(m·K)),此外,该复合泡沫还具有良好的热稳定性和自熄灭性能,这些特性赋予了其在保温隔热等领域更加广阔的应用前景。

     

  • 图  1  各向异性纤维素纳米纤维(CNF)/芳纶纳米纤维(ANF)复合泡沫的制备流程图

    Figure  1.  Schematic of the preparation of anisotropic cellulose nanofibers (CNF)/aramid nanofibers (ANF) composite foam

    图  2  CNF/ANF复合泡沫的FTIR图谱

    Figure  2.  FTIR spectra of CNF/ANF composite foam

    图  3  (a) CNF1ANF0、CNF1ANF1、CNF0ANF1复合泡沫的XPS全图谱;CNF1ANF0 (b)、CNF1ANF1 (c)、CNF0ANF1 (d)的C1s 精细图谱

    Figure  3.  (a) XPS full spectra of CNF1ANF0, CNF1ANF1, and CNF0ANF1 composite foam; C1s high-resolution spectra of CNF1ANF0 (b),CNF1ANF1 (c), CNF0ANF1 (d)

    图  4  CNF/ANF复合泡沫纵切面和横切面上的SEM图像:(a1, a2) CNF1ANF0;(b1,b2) CNF3ANF1;(c1,c2) CNF2ANF1;(d1,d2) CNF1ANF1;(e1,e2) CNF1ANF2; (f1,f2) CNF1ANF3;(g1,g2) CNF0ANF1

    Figure  4.  SEM images of CNF/ANF composite foam at axial and radial section: (a1, a2) CNF1ANF0; (b1,b2) CNF3ANF1; (c1,c2) CNF2ANF1; (d1,d2) CNF1ANF1; (e1,e2) CNF1ANF2; (f1,f2) CNF1ANF3 ; (g1,g2) CNF0ANF1

    图  5  CNF/ANF复合泡沫的纵向压缩应力-应变曲线(a)、横向压缩应力-应变曲线(b)、 80%压缩应变对应的应力图(c)和纵向/横向弹性模量图(d)

    Figure  5.  Axial compression stress-strain (a), radial compression stress-strain (b), compressive stress at 80% strain (c) and axial/radial elastic modulus (d) curves of CNF/ANF composite foam

    图  6  CNF/ANF复合泡沫的TG (a)和DTG曲线(b)

    Figure  6.  TG (a) and DTG (b) curves of CNF/ANF composite foam

    图  7  (a)泡沫在纵向/横向上的导热系数;(b) CNF/ANF复合泡沫与其他研究导热系数对比图[2127]

    Figure  7.  (a) Thermal conductivity of foam in the axial and radial directions; (b) Comparison graph of thermal conductivity between CNF/ANF composite foam in other researches[2127]

    ATM—Acid tempo methyltrimethoxysilane; PVA-co-PE—Polyvinyl alcohol-co-ethylene; PAN/BA-a/SiO2—Polyacrylonitrile/Bifunctional benzoxazine/SiO2; GA—Gelatin aerogel; PVA/CNF/GONS—Polyvinyl alcohol/Cellulose nanofibrils/Graphene

    图  8  CNF2ANF1在纵向(上)和横向(下)方向在180℃加热10、20、30、60 min的红外热成像图像

    Figure  8.  Infrared thermal images of CNF2ANF1 in the axial (top) and radial (bottom) directions after heating at 180℃ for 10, 20, 30, and 60 minutes

    图  9  CNF/ANF复合泡沫的燃烧试验

    Figure  9.  Combustion tests of CNF/ANF composite foam

    表  1  CNF1ANF0、CNF1ANF1、CNF0ANF1复合泡沫的元素含量分析(at%)

    Table  1.   Element content analysis of CNF1ANF0, CNF1ANF1, and CNF0ANF1 composite foam (at%)

    Sample C N O
    CNF1ANF0 56.21 0.61 43.18
    CNF1ANF1 53.72 2.79 43.49
    CNF0ANF1 72.36 13.68 13.96
    下载: 导出CSV

    表  2  不同配比的CNF/ANF复合泡沫的密度、孔隙率以及收缩率

    Table  2.   Density, porosity and shrinkage of CNF/ANF composite foam with different ratios

    Sample Density/
    (mg·cm−3)
    Porosity/% Shrinkage
    ratio/%
    CNF1ANF0 13.67±0.59 99.07±0.04 18.30±0.05
    CNF3ANF1 12.57±0.88 99.15±0.06 17.02±0.14
    CNF2ANF1 12.25±1.02 99.16±0.07 16.58±0.11
    CNF1ANF1 12.63±1.41 99.13±0.10 16.40±0.07
    CNF1ANF2 12.92±0.65 99.10±0.05 16.56±0.08
    CNF1ANF3 11.11±0.86 99.26±0.09 16.25±0.012
    CNF0ANF1 11.49±0.96 98.97±0.07 15.50±0.07
    下载: 导出CSV
  • [1] YU Z, YANG N, APOSTOLOPOULOU V, et al. Fire-retardant and thermally insulating phenolic-silica aerogels[J]. Angewandte Chemie International Edition, 2018, 130(17): 4628-4632. doi: 10.1002/ange.201711717
    [2] MOON R J, MARTIN A, NAIRN J, et al. Cellulose nanomaterials review: Structure, properties and nanocomposites[J]. Chemical Society Reviews, 2011, 40(7): 3941. doi: 10.1039/c0cs00108b
    [3] 陈一鸣. 各向异性纳米纤维素气凝胶的结构调控及其性能影响机制研究[D]. 南京:南京林业大学, 2021.

    CHEN Yiming. Structure control and mechanism investigation of anisotropic nanocellulose aerogels and their performance effects [D]. Nanjing: Nanjing Forestry University, 2021(in Chinese).
    [4] ZHENG R, HU J, LIN Z, et al. Anisotropic polyimide/cellulose nanofibril composite aerogels for thermal insulation and flame retardancy[J]. ACS Applied Polymer Materials, 2023, 5(6): 41804189.
    [5] 桓珊, 赵国栋, 李晓捷, 等. 芳纶复合纳米纤维气凝胶的制备及其性能研究[J]. 合成纤维, 2021, 50(6): 30-35.

    HUAN Shan, ZHAO Guodong, LI Xiaojie, et al. Preparation and performance study of aromatic polyamide composite nanofiber aerogels[J]. Synthetic Fiber, 2021, 50(6): 30-35(in Chinese).
    [6] XIE C, LIU S, ZHANG Q, et al. Macroscopic-scale preparation of aramid nanofiber aerogel by modified freezing-drying method[J]. ACS Nano, 2021, 15(6): 10000-10009. doi: 10.1021/acsnano.1c01551
    [7] 黄连青. 芳纶纳米纤维高效制备及其有序结构凝胶构筑机制的研究[D]. 西安: 陕西科技大学, 2022.

    HUANG Lianqing. Efficient Preparation of Aromatic polyamide nanofibers and study on the mechanism of ordered structure gel construction[D]. Xi'an: Shaanxi University of Science and Technology(in Chinese).
    [8] 刘增伟. 芳纶气凝胶纤维的制备表征及应用[D]. 合肥: 中国科学技术大学, 2022.

    LIU Zengwei. Preparation, characterization, and application of aromatic polyamide aerogel fibers [D]. Hefei: University of Science and Technology of China, 2022(in Chinese).
    [9] ZHENG J, HANG T, Li Z, et al. High-performance and multifunctional conductive aerogel films for outstanding electromagnetic interference shielding, Joule heating and energy harvesting[J]. Chemical Engineering Journal, 2023, 471: 144548.
    [10] LIU Q, SGENG M, DUAN C, et al. 3D hierarchical porous carbon aerogel electrocatalysts based on cellulose/aramid nanofibers and application in high-performance Zn–Air batteries[J]. ACS Applied Energy Materials, 2022, 5(12): 15146-15154. doi: 10.1021/acsaem.2c02801
    [11] 胡锦澜, 李嘉杰, 张彦飞, 等. 环氧树脂/多巴胺增强芳纶纤维界面性能[J]. 工程塑料应用, 2023, 51(4): 36-41.

    HU Jinlan, LI Jiajie, ZHANG Yanfei, et al. Interface performance of epoxy resin/dopamine reinforced aromatic aramid fiber[J]. Engineering Plastics Application, 2023, 51(4): 36-41(in Chinese).
    [12] YANG B, WANG L, ZHANG M, et al. Fabrication, applications, and prospects of aramid nanofiber[J]. Advanced Functional Materials, 2020, 30(22): 2000186. doi: 10.1002/adfm.202000186
    [13] YANG B, WANG L, ZHANG M, et al. Timesaving, high-efficiency approaches to fabricate aramid nanofibers[J]. ACS Nano, 2019, 13(7): 7886-7897. doi: 10.1021/acsnano.9b02258
    [14] MAITI S, JAYARAMUDU J, DAS K, et al. Preparation and characterization of nano-cellulose with new shape from different precursor[J]. Carbohydrate Polymers, 2013, 98(1): 562-567. doi: 10.1016/j.carbpol.2013.06.029
    [15] WANG S, MENG W, LV H, et al. Thermal insulating, light-weight and conductive cellulose/aramid nanofibers composite aerogel for pressure sensing[J]. Carbohydrate Polymers, 2021, 270: 118414.
    [16] 张艳, 马忠雷, 李桢, 等. 轻质高强MXene/细菌纤维素复合气凝胶的制备及其电磁屏蔽性能[J]. 复合材料学报, 2023, 40(11): 6409-6417. doi: 10.13801/j.cnki.fhclxb.20230109.003

    ZHANG Yan, MA Zhonglei, LI Zhen, et al. Preparation and EMI shielding properties of lightweight and mechanically strong MXene/bacterial cellulose composite aerogels[J]. Acta Materiae Compo-sitae Sinica, 2023, 40(11): 6409-6417(in Chinese). doi: 10.13801/j.cnki.fhclxb.20230109.003
    [17] YANG M, ZHAO N, CUI Y, et al. Biomimetic architectured graphene aerogel with exceptional strength and resilience[J]. ACS Nano, 2017, 11(7): 6817-6824. doi: 10.1021/acsnano.7b01815
    [18] YANG X, CRANSTON E D. Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties[J]. Chemistry of Materials, 2014, 26(20): 6016-6025. doi: 10.1021/cm502873c
    [19] ZHANG J, CHANG Y, TEBYETEKERWA M, et al. “Stiff–Soft” binary synergistic aerogels with superf-lexibility and high thermal insulation performance[J]. Advanced Functional Materials, 2019, 29(15): 1806407. doi: 10.1002/adfm.201806407
    [20] APOSTOLOPOULOU V, MUNIER P, BERGSTROM L. Thermally insulating nanocellulose-based materials[J]. Advanced Materials, 2021, 33(28): 2001839. doi: 10.1002/adma.202001839
    [21] WICKLEIN B, KOCJAN A, SALAZAR G, et al. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide[J]. Nature Nanotechnology, 2015, 10(3): 277-283. doi: 10.1038/nnano.2014.248
    [22] JIANG S, ZHANG M, JIANG W, et al. Multiscale nanocelluloses hybrid aerogels for thermal insulation: The study on mechanical and thermal properties[J]. Carbohydrate Polymers, 2020, 247: 116701. doi: 10.1016/j.carbpol.2020.116701
    [23] ZUO X, CHANG K, ZHAO J, et al. Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode materi-al[J]. Journal of Materials Chemistry A, 2016, 4(1): 51-58. doi: 10.1039/C5TA06869J
    [24] SI Y, YU J, TANG X, et al. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality[J]. Nature Communications, 2014, 5(1): 5802. doi: 10.1038/ncomms6802
    [25] JIANG S, ZHANG M, LI M, et al. Cellulose nanofiber (CNF) based aerogels prepared by a facile process and the investigation of thermal insulati-on performance[J]. Cellulose, 2020, 27(11): 6217-6233. doi: 10.1007/s10570-020-03224-4
    [26] JAVADI A, ZHENG Q, PAYEN F, et al. Polyvinyl alcohol-cellulose nanofibrils-graphene oxide hybrid organic aerogels[J]. ACS Applied Materials & Interfaces, 2013, 5(13): 5969-5975.
    [27] DRUEL L, BARDL R, VORWERG W, et al. Starch aerogels: A member of the family of thermal super insulating materials[J]. Biomacromolecules, 2017, 18(12): 4232-4239. doi: 10.1021/acs.biomac.7b01272
    [28] YANG M, CAO K, SUI L, et al. Dispersions of aramid nanofibers: A new nanoscale building block[J]. ACS Nano, 2011, 5(9): 6945-6954. doi: 10.1021/nn2014003
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  271
  • HTML全文浏览量:  212
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-08
  • 修回日期:  2023-10-10
  • 录用日期:  2023-10-12
  • 网络出版日期:  2023-11-01
  • 刊出日期:  2024-06-15

目录

    /

    返回文章
    返回